@ webGAIN

Spin User’s Guide
Beta Release Draft

Spin User’s Guide

Spin User’s Guide

The software described in this book is furnished under a license agreement and may be
used only in accordance with the terms of the agreement.

Copyright Notice
Copyright © 2000 WebGain, Inc.
All Rights Reserved.

This document may not, in whole or in part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine- readable form without prior
consent in writing from WebGain, Inc., 5425 Stevens Creek Blvd., Santa Clara, CA 95051, USA.

ALL EXAMPLES WITH NAMES, COMPANY NAMES, OR COMPANIES THAT APPEAR IN
THIS MANUAL ARE IMAGINARY AND DO NOT REFER TO, OR PORTRAY, IN NAME OR
SUBSTANCE, ANY ACTUAL NAMES, COMPANIES, ENTITIES, OR INSTITUTIONS. ANY
RESEMBLANCE TO ANY REALPERSON, COMPANY, ENTITY, ORINSTITUTIONISPURELY
COINCIDENTAL.

Every effort has been made to ensure the accuracy of this manual. However, WebGain
makes no warranties with respect to this documentation and disclaims any implied
warranties of merchantability and fitness for a particular purpose. WebGain shall not be
liable for any errors or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual or the examples herein. The information in
this document is subject to change without notice.

Trademarks
Spin, WebGain, and the WebGain logo are U.S. trademarks of WebGain, Inc.

Other product names mentioned in this manual may be trademarks or registered
trademarks of their respective companies and are the sole property of their respective
manufacturers.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

WebGain LICENSE AND WARRANTY

The WebGain software which accompanies this license (the "Software") is the property of WebGain or its licensors and is protected by
copyright law. While WebGain continues to own the Software, you will have certain rights to use the Software after your acceptance of
this license. Except as may be modified by a license addendum which accompanies this license, your rights and obligations with respect
to the use of this Software are as follows:
* You may:

(i) use one copy of the Software on a single computer;

(ii) make one copy of the Software for archival purposes, or copy the software onto the hard disk of your computer and retain the
original for archival purposes;

(iii) use the Software on a network, provided that you have a licensed copy of the Software for each computer that can access the
Software over that network;

(iv) after written notice to WebGain, transfer the Software on a permanent basis to another person or entity, provided that you retain no copies of
the Software and the transferee agrees to the terms of this agreement; and

(v) if a single person uses the computer on which the Software is installed at least 80% of the time, then after returning the completed
product registration card which accompanies the Software, that person may also use the Software on a single home computer.

(vi) include object code detived from the WebGain component (java soutce or class) files identified below in programs that you
develop using the Software and you may use, distribute, and license such programs to third parties without payment of any further license
fees, so long as a copyright notice sufficient to protect yout copyright in the program is included in the graphic display of your program
and on the labels affixed to the media on which your program is distributed. You may make changes to the WebGain components, but
only to the extent necessary to correct bugs in such components, and not for any other purpose. You may include unmodified (except
as stated in the previous sentence) WebGain component files required by your programs, but not as components of any development
environment or component library you are distributing. The Java Virtual Machine (VM) is not part of the WebGain component files to
which you have the rights described in this paragraph.

* You may not:
(i) copy the documentation which accompanies the Software;
(ii) sublicense, rent or lease any portion of the Software;

(iii) reverse engineer, decompile, disassemble, modify, translate, make any attempt to discover the source code of the Software, or
create derivative works from the Software; or

(iv) use a previous version or copy of the Software after you have received a disk replacement set or an upgraded version as a
replacement of the prior version, unless you donate a previous version of an upgraded version to a charity of your choice, and such
charity agrees in writing that it will be the sole end user of the product, and that it will abide by the terms of this agreement. Unless you
so donate a previous version of an upgraded version, upon upgrading the Software, all copies of the prior version must be destroyed.

¢ Return Rights:

If you are not satisfied with this copy of the Software for any reason, please check with the dealer from which you purchased this copy
to determine whether that dealer offers any right to return the Software for a full or partial refund.

e Limited Warranty:

WebGain warrants that the media on which the Software is distributed will be free from defects for a period of sixty (60) days from the
date of delivery of the Software to you. Your sole remedy in the event of a breach of this warranty is that WebGain will, at its option,
replace any defective media returned to WebGain within the warranty period or refund the money you paid for the Software. WebGain
does not warrant that the Software will meet your requirements or that operation of the Software will be uninterrupted or that the Software
will be error-free.

THEABOVEWARRANTYISEXCLUSIVEAND IN LIEU OF ALLOTHER WARRANTIES, WHETHER EXPRESS ORIMPLIED,INCLUDING
THEIMPLIED WARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSEANDNONINFRINGEMENT. THISWAR-
RANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

¢ Disclaimer of Damages:

REGARDLESS OF WHETHER ANY REMEDY SET FORTH HEREIN FAILS OF ITS ESSENTIAL PURPOSE,INNO EVENT WILL WEBGAIN
BELIABLETO YOU FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING ANY LOST PROFITS OR
LOST DATA ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF WEBGAIN HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

SOMESTATESDONOTALLOWTHELIMITATION OREXCLUSIONOFLIABILITY FORINCIDENTALOR CONSEQUENTIALDAMAGES
SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

IN NO CASE SHALL WEBGAIN’S LIABILITY EXCEED THE PURCHASE PRICE FOR THE SOFTWARE. The disclaimers and limitations set
forth above will apply regardless of whether you accept the Software.

¢ U.S. Government Restricted Rights:

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph

(c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c) (1) and (2) of the

Commercial Computer Software-Restricted Rights clause at 48 CFR 52.227-19, as applicable, WebGain, Inc., 5425 Stevens Creek Blvd.,

Santa Clara, CA 95051, USA.

Export Law Assurances:

You acknowledge and agree that the Software may be subject to restrictions and controls imposed by the United States Export Admin-
istration Act and the regulations thereunder. You agree and certify that neither the Software nor any portion thereof will be acquired,
shipped, transferred or exported, directly or indirectly, into any country or in any manner prohibited by applicable law or regulation.
Term and Termination:

This Agreement is effective until terminated. You may terminate this Agreement at any time by destroying the Software including all
copies or updates thereof. This Agreement will immediately and automatically terminate without notice if you fail to comply the any term
or condition of this Agreement. You agree upon termination to promptly destroy the Software including all copies or updates thereof.
* General:

This Agreement will be governed by the laws of the State of California. This Agreement may only be modified by a license addendum
which accompanies this license or by a written document which has been signed by both you and WebGain. Should you have any ques-
tions concerning this Agreement, or if you desire to contact WebGain for any reason, please write:

WebGain Customer Service, 5425 Stevens Creek Blvd., Santa Clara, CA 95051, USA

Spin User’s Guide

C ONTENTS

Chapter 1: Basic Ideas

Introduction to Web Applications.............cccccciiis 1-1
Building Web Applications with Spin.................cco 1-2
COMPONENES ..t 1-3
JavaBeans ... 1-3
Properties ... 1-4
EVENES .o 1-4
Methods. ..o 1-4
Enterprise JavaBeans ... 1-4
ACTOIS ... 1-5
Behaviors ... 1-5
Activating Behaviorscccoiiiiii 1-6
Kinds of Behaviorsccoocoiiiiiiiic, 1-6
Action Behaviorsccccoiiiii 1-6
Action Group Behaviorscccccoooiiiiii, 1-7
Conditional Behaviors.............cccoiiiiiiiiiiic 1-7
Script Behaviors ... 1-7
Timeline Behaviors 1-7
Counter Behaviorscccoiiiiiiiiiiiiciiiciee e 1-8
User Behaviors.cccoooiiiiiiiiiiicce e 1-8
DAt .. 1-8
Java EXpressions ... 1-9
CAPSUIES ... 1-9
Kinds of Capsulesccoooiiiiii 1-10
Capsule Hierarchy ... -1
AlIBSES ... 1-11
Editors and VIEWSooooiiiiiiiiii 1-13
Kinds of Editors and Viewsccccccciiiiiiiii 1-13
Editas You Run ... 1-16
DebUGGING. ..ttt 1-16
Chapter 2: Building a Web Application
What Web Applications Do ..o 2-1
UBRLS e 2-1
ReqUESES ..o, 2-4
SESSIONS ittt 2-4
RESPONSES ..o, 2-5
Building a Simple Servlet...........ccocooiiiii 2-5
Set Up for Testingcceeiiiiiiiii 2-8

Spin User’s Guide

ProducingaWeb Page ... 2-9
Adding Dynamic Contentcccceviiiiiiiiiiiiiiieeee 2-12
Adding a Simple Form ... 2-14
Using a Template ... 2-20

Chapter 3: Accessing a Database

Accessing the Built-in Databaseccccc 3-2
Browsing Connectionscccuuiiiiiiiiiiiiii 3-2
Building SOL Statementsccooiiiiiiiiiiiee 3-3
Checking OptionSccvviiiiiiicci e 3-5
Checking SYNtaXeeeeiiiiiiiiieiei e 3-6
Building Simple Statementscccooiiiiii 3-7
Specify a Connectioncccccoviiiiiiiiiiiiecee e, 3-7
Specify a Table ... 3-8
Specify ColuMNSooiiiiiiiiic e, 3-8
Specify Conditionscoccuiiiiiiiiiieiii e 39
SQISEIECT . 3-11
Choose Tablesc.uuiiiiiiii 3-11
SPECIY JOINS ..o 3-12
Specify SOrting........vveiiiiiii 3-13
Format Columns ..o 3-13
SqlRawStatement and SqlProcedureCallccccooineene, 3-15
Building SQOL Statements - Additional Toolsccccceeennnn. 3-18
Executing SOL Statementscccocoiiiiiiiii 3-18
Causing EXecution ..o 3-21
Retrieving Results ... 3-22
Passing Parameterscccooiiiiiiii 3-23
Connecting to a Database..............oooiiiiiiiiiiii 3-25
Defining Connection PoOISc.cvviiiiiiiiiiii, 3-25
SPINSQIL.PrOPErtieScciiiiiiiiiiiii e 3-26

Using Connection Pools ... 3-27
Using a Dedicated Connectioncccccoeviiiiiiiiiiiiiiieceen, 3-27
For More Information.............ooeiiiii e 3-28

Chapter 4: Using the Spin JSP Tag Library

JSP Control TagsSoeeieoiiiiiee e 4-1
Call tag oo 4-2
conditional tagevvviiiiii 4-3
repeat tagoooiiiiii s 4-4

JSP User Interface Tagscoooiiiiiiiiiiiiiiee e 4-4
Attributes for Individual User Interface Tagsccccovvieeinnne. 4-8

Contents

Creating a JSP with Embedded Spin Capsulecccccoee. 4-13
Chapter 5: Working with EJBs in Spin
Configuring Your Environment ..o 5-1
COoNVENLIONS ..t 5-1
Configuring the Servercccccccciiiiiiiiieee e 5-1
Copy the EJBs to the jBoss\deploy folder 5-1
Copy other files........ooiiiiii 5-1
Edit the jBoss.properties file..........ccccoiiiiii 5-2
Add Database Driverscccooiiiiiiiiiiiiiiii 5-2
Edit the jBoss.conffile..........ccoooii 5-2
Configuring SPINcooiiieii i 5-2
Process EJBS for Spin.........coooooiiiiiiiiiiiiice 5-2
Enable the Web Server in Spin ..., 5-3
Enable jBoSS in SPin......cvviiiiiiiiii 5-3
Enable Pointbase in Spincccccooiiiiiiic 5-3
Restart Spin ... 5-3
Running the BankTransactions Examplecccocc. 5-3
Learning from the Bank Transactions Examplec..cccocceeene. 5-4

Appendix A: Events

Events Generated by Behaviorscccooiii A-1
TSt oo A-1
ACtIONGIOUP .t A-1
Timeline and Countercocciiiiiiiii e, A-1

Events Generated by Capsulescccccooviiiiiiiiiiiiii e, A-2
Applet Capsules ... A-2
Application Capsulesooiiiiiiiiiiiiiii i A-2
Nonvisual Actor Capsulescccccoviiiiiiiiiiii e A-2
Visual Actor Capsulescccccoiiiiiiiiiiiiiiic A-2
Serviet Capsules ... A-2
Java Server Page Bean Capsulescccccooiiiiiiciinincne, A-3

Events Generated by Other Built-in Components A-3

Appendix B: User Interface Reference

Viewing JavaDOoCs.oooiiiiiiii B-1
Project Editor ... B-1
File MENU ..o B-2
Edit MENU ..o B-3
GeNEIal ... B-3
DISPIAY ... B-3

Spin User’s Guide

SCriptOPLIONS ... B-3
EnterprisedavaBeans..................cooo B-3
DebUGSENVEN ... B-4
Project MEenuooiiiiiii i B-4
View MENU ..o B-4
Capsule Outline EdItor.........cccooiiiiiiiiie B-5
Drag and Drop in the Outlinecccooii B-5
Using the Toolbar ..o B-6
File MENU ..o B-7
Edit MenU ..o B-8
INSErt MENU ..o B-8
View MENU ..o B-10
Outling MENUoooiiiiiiii e B-10
Capsule, Behavior, or Actor Menuccccciiiiiiiiiiiinne, B-12
Capsule MeNnUcccviiiiiiiiii B-12
Behavior Menuccooooiiiii e B-12

ACTOr MENU ... B-12
TOoyboX EQItOr ..o B-13
Editing Handles ... B-13
Drag and Drop or Copy Objects in the Toybox B-14
Toybox Editor Menuscuuiiiiiiiiii B-14
Running versus Editing ... B-14
Debugging Using an Error Window ..., B-14
Debugging Using the Console Windowccccceiiiiiiieenn, B-15

vi

Basic Ildeas

Spin is a tool for assembling applications out of software components. It is especially useful for
building enterprise applications such as web applications. This chapter explains what a web
application is and introduces you to the basic ideas behind Spin. It covers the following Spin topics:

O “Introduction to Web Applications (page 1)

0 “Building Web Applications with Spin (pag&)
O “Components (page 3)

O “Actors (page 5) P
O “Behaviors (pa; Q

O “Capsules (page

O “Editors and View¥ (page 13)

|

“Debugging (page 16)

Introduction to Web Applications

Originally, all computer applications ran on a single computer. You are probably used to single-
computer applications such as word processors or spreadsheets. These applications contain both the
user interface and logic layer parts of the application. The user interface is the windows, buttons, menus,
and other means by which you make your will known to the program. The logic layer manipulates the
underlying data (text, numbers, formulas, or e-mail messages). The entire application — both the user
interface and underlying logic — runs on a single computer and accesses data on that same computer.

Client-server business applications break this single-computer model of applications. They use a
model that separates the user interface from the underlying logic. The user interface runs on the user’s
computer (often a PC) and makes requests as a clent to a server computer that manipulates the
underlying data. For example, an airline reservation system might have many thousands of client PCs,
one for each reservation agent, all connected to a central computer that makes flight reservations and
issues tickets.

Client-server applications, such as airline reservation systems and bank teller systems, are a kind of
distributed application. Distributed applications run on more than one computer. The pieces of the
application communicate over a network.

1-1

Spin User’s Guide

The World Wide Web is itself a distributed application that runs over the Internet. It consists of
computers that function as web servers — computers that serve resources such as text, images, sounds,
or other applications. These resources are accessed using a URL (Uniform Resource Locator), which
functions as the address to the resource. A web browser client, such as Netscape Navigator or Microsoft
Internet Explorer, uses URLs to access various resources over the Internet and display them. One
such resource is a web page. Web pages are resources whose contents are encoded (tagged or marked
up) with HTMI. (Hypertext Markup Language). HTML consists of sets of tags that mark the
structure of a web page’s content. This tells the web browser how to display the page. An important
HTML tag is the /ink tag, a hypertext pointer that contains a URL that links web pages and other
resources into a giant interconnected web of information.

The World Wide Web was originally designed to be a publishing medium that contained only static
information that didn’t change much over time. A web page would change only when someone, like a
webmaster, would update it manually. However, people soon wanted to use the Web interactively, and
for dynamic information. Dynamic information is information that changes automatically, such as a
web page that contains a company’s current stock price and gets updated without requiring someone

to edit the page manually. A familiar example of interactiygfise of the Web is a search engine such as
Yahoo!, which lets you specify a list of keywords % enYesponds with a list of web pages matching

those keywords.

Dynamic and interactive web pages are i enteQusing server-side programs, programs that run on
the web server. So in addition t hing sources, a web server can also collect data (such as
keywords or other search spec s) f®m the web browser client and execute a program that

creates a web page dy# lly aad ref@rns it to the web browser.

Server-side programs bined with static web pages and other resources to build web applications.

Besides search engines,6ther examples of web applications range from simple hit counters, to web
sites that provide stock prices and weather reports, to complex e-commerce and business-to-business
applications. Another use for web applications is to give web access to older client-server applications.
For example, a business with a client-server human resources system might want to build a simple
web application that allows employees to see how much vacation time they have accrued. Or a more
complex web application can give customers online web access to their banking systems or to an

airline reservation system.

Although creating static web pages using HTML is relatively easy, creating server-side programs such
as web applications can be rather difficult. Web applications can be expensive to create: they are
typically created manually by programmers. Another problem with building web applications is a lack
of standards. Good standards, like HTML and HTTP, have allowed the development of powerful
tools to make it easier to create and serve static web pages. But because there are few standards for
web applications, most of the available tools to help you build web applications use proprietary
technology, which typically locks you into using proprietary servers and has other limitations.

Building Web Applications with Spin

1-2

Spin offers a different approach to building web applications. Spin is a new kind of tool, an application
assembly tool. Spin leverages standards to allow you to build complex applications out of components.

The advantages of building applications out of components are well established: dramatically
increased reliability, supportability, scalability, security, and reuse. The hard part of building

Chapter 1: Basic Ideas

applications from components is connecting the components together, traditionally a huge integration
problem. Spin solves this integration problem by providing a powerful and comprehensible
application assembly technology based on behaviors. Applications you develop in Spin are:

0 Standards based. Spin assembles open, standards-based web applications from prebuilt
standards-based components, which you can acquire from a number of sources. Conforming to
standards when writing your own components vastly improves the ease of use and reusability of
those components.

0 Portable. Your applications will run on any Java-enabled platform, including all major web
application servers. Spin itself is written in Java.

O Powerful. In various places, you can insert arbitrary Java expressions ot even whole chunks of
Java code, in case the predefined choices do not permit the required functionality. Anything you
can code in Java, you can create in Spin, so Spin never limits you.

O Flexible. Applications built with Spin ate easy to change. You can modify your Spin application
as your needs change over time. It is also possible to build generic applications, such as a generic e-
commerce application, that can be easily customiz meet specific and individual needs.

O Reusable. Much of the work you do in Spigfcan be r&used in other applications. The process of
using Spin inherently creates new componen

Spin builds applicati % of components. Components are reusable software building blocks that

O
work as single, separatdyinctional units. Components are available for various applications, and new

Components

components can be created easily. Spin comes with a variety of components and the WebGain web
site lists suppliers and distributors of additional components.

Spin works with many types of components, including JavaBeans and Enterprise JavaBeans (EJBs).
This document refers to components that are either JavaBeans or E]Bs simply as beans. Beans
implement an interface that allows any application to determine automatically the services and
functions they provide. Applications built with JavaBeans can run on any platform that runs Java,
which includes all major web servers. Applications built with EJBs require a suitable EJB application
server (such as BEA WebLogic) or an EJB container. At this writing, there are more than fifty such
products in the marketplace; some of them are free.

Spin’s component architecture allows various tools and parts to work together. Standardized nut, bolt,
and screw sizes allow wrenches and screwdrivers from any toolbox to be usable; likewise, you can use
Spin with any tool that works with JavaBeans or EJBs. Any valid bean you create can be used with
Spin, no matter how you created it, and any bean you create with Spin can be used with other tools
that work with beans.

JavaBeans

A JavaBean is a packaged Java class with the following qualities:
O It has properties with values that can be set and retrieved.

O It can generate specified events.

Spin User’s Guide

O It can execute specified methods.

O It can be serialized for storage or for transmission over a network, including its current state (such
as the value of all of its properties).

O TItis packaged as a jar file with supporting classes and resources, complete and ready for use in an
arbitrary number of applications.

Spin comes with many JavaBeans. See the Spi n/ beans directory for some examples.

For more information on JavaBeans, see:

http://java. sun. coni product s/ j avabeans

Properties

Properties are the qualities of a component that you can modify. Properties have values: the color of a
background, the size or location of a window, the identification number or balance of a checking

account.
Events
Many JavaBeans, particularly those that r@%u interface components, generate events. An event
S
el

is any occurrence of interest to, plica h as a mouse click, a key press, or the opening of a
file. A timer can generate an e ordifig to a schedule. A bean can generate no events, one event,

ofr many events.

Events use the Java tWg-pa#t naming convention: an event class followed by the name of the specific
event, with a dot as a seéparator. For example, a mouse click is Mouse. mouseCl i cked. The event
class is MoUS e and the specific eventis moused i cked.

For the complete list of events defined for specific Spin components, see Appendix A.

Methods

All Javabeans have methods. A wethod is a procedure that executes when the method is invoked.
Invoking a method on a component typically causes the component to do something,

The properties of a JavaBean are implemented using two methods, the property’s get and set methods.
For example, an animated object could use the two methods set Ani mat i onRat e and

get Ani nat i onRat e to allow you to edit the current value of the property ani mat i onRat e.
Spin hides such methods from you and lets you view or edit a component’s properties directly, rather
than by calling methods. Spin also allows you to execute any method from a menu, as long as the
method does not require an any arguments (additional data) to execute.

In Spin, executing a method that takes an argument requires a behavior. Since Spin is running your
application while you are building it, it is easy to drop a behavior onto a bean and use it to execute an
arbitrary method on that bean.

Enterprise JavaBeans

1-4

Enterprise JavaBeans provide portable access to enterprise services, including:

Chapter 1: Basic Ideas

databases
distributed transactions
security

messaging

O o o o o

mission-critical robustness and scalability

Enterprise JavaBeans make use of specific conventions so that applications containing EJB can access
enterprise services, in a portable manner, from within any EJB-enabled web application server. See
Chapter 5 for more information about working with EJBs in Spin.

For more information about Enterprise JavaBeans, see:

http://java. sun. conif products/ejb

Actors

Spin combines a component architecture with an ring technology based on behaviors. With
behavior-based authoring, you assign beh@wiors to Rgzors. One of the unique features of Spin is that it

allows you to use an arbitrary beag as an

An actor can be visible on the ayjsuclt as a clock or an animation, or can be a nonvisible

component, such asg Bonenf§that reads a file or generates HTML. When an actor is visible on

the display, it’s called ctor. Spin comes with a set of predefined actors, some visual and some

not.

There is sometimes confusion in the Java world because the base class of the visible user interface
widgets in the Abstract Windowing Toolkit (AWT) is named “Component.” Even though many visual
components in Spin are derived from the AWT Component class, the concept of a JavaBean or EJB
component in Spin should not be confused with the AWT Component class. Because an actor is a
Spin component, actors also have properties, events they can generate, and methods they can execute.

Behaviors

A bebavior causes an actor to do something, enables communicate between actors, or responds to user
input. Every behavior has a stimulus and a response:

O The stimulus for a behavior is always an event. When the proper event arrives, it activates the
behavior.

0 How the behavior responds when activated depends on the kind of behavior. The behavior might
call a method on an actor, set the value of a property, or generate another event.

For each field in a behavior editor dialog box, there is a menu that lists appropriate values for that
field. This menu is activated by clicking on the arrowhead to the right of each field.

Spin comes with several different kinds of predefined behaviors. You can also assemble new behaviors
out of existing behaviors and save them for reuse.

1-5

Spin User’s Guide

Activating Behaviors

When a behavior receives its stimulus and begins to run, we say it is activated. All behaviors are
activated by an event. You can specify any number of events that activate a behavior. When you
specify more than one stimulus, the behavior activates if any one of the specified events are received.
For each event, you can also specify a condition to be evaluated. When the associated event is
received, the behavior evaluates the condition and activates only if the result is true.

Certain kinds of behaviors, once activated, continue to execute for some period of time. These
behaviors also allow you to specify an event, along with an optional condition to evaluate, that will
cause the behavior to deactivate. When a behavior is deactivated, it stops executing. Two behaviors that
can be activated and deactivated ate the counter and the timeline behavior. (These two behaviors are
rarely used in web applications, however.)

Kinds of Behaviors

Spin defines seven kinds of behaviors: «
O action ?

0 action group P

O conditional %

O script
O
O
O

timeline

counter

user behaviors

Action Behaviors

An action bebavior is the most common kind of behavior in Spin. When activated, an action behavior
invokes a method on an actor. You specify this method as follows:

O You specify the actor on which to invoke the method in the Send To: field.

O You Specify The Specific Method To Execute On The Actor In The Message: Field.

O You specify any arguments (additional data) required by that method in the Dat a: field. A

method may require no arguments; in this case the Dat a: field is not displayed.

A single method name may offer several ways of specifying additional data. For example, a method
that requires a color as an argument might allow you to specify that color as an object of type Col or
using three integers that represent the red, green, and blue components of the color. Alternatively, you
might be able to specify a string, such as “orange” or use a pulldown menu to select the color.

You can specify each required argument using either a constant or an evaluated expression. Spin lets
you do this by toggling (click on whichever type is showing to show the other) between two types of
argument:

O Wth: (an argument specified using a constant)

Chapter 1: Basic Ideas

O Wt h= (an argument specified as an evaluated expression)

One of the powerful features of Spin is that it allows you to specify an evaluated argument using an
arbitrary Java expression. This expression can use values supplied by other actors, call arbitrary Java
functions, and effectively do anything you can program in Java.

Action Group Behaviors

An action group behavior lets you group several behaviors so they can be moved or copied as a unit.
When activated, the action group behavior responds by generating another event called

Behavi or . act i vat ed. The behaviors grouped in the action group can all receive this single
event as their stimulus, responding according to their definitions. However, this is up to you — some
or all of the behaviors in the group can be triggered by other events, and other behaviors not in the
group can be triggered by that event.

Conditional Behaviors

Spin allows you to specify conditional activation fogany b&havior. Although this is useful in many
cases, Spin also provides conditional behaviors, a m&8e general-Rurpose mechanism.

A conditional behavior allows you to em explicit 7/ test anywhere you can locate a behavior.

s its , it evaluates its associated expression. If the result is

if thelresult is false, it generates an i f Fal se event. Other
behaviors can use ei hesqevent® as a stimulus, causing them to execute under the appropriate

circumstances.

Script Behaviors

A seript behavior allows you to execute any arbitrary sequences of Java statements in response to an
event.

As discussed eatlier, building applications out of components presents a huge integration problem.
Components from different source are not designed to work well together. Script behaviors allow you
to using Java code to perform this integration. While this is a powerful feature of Spin, note that a
heavy use of script behaviors is a sign that you should be purchasing (or writing) better components.

A script behavior can also be used when you cannot find or do not want to write a component to
provide a desired functionality. Again, while this is a powerful feature that allows you to create any
application in Spin, it is usually better to create a component with the desired functionality. New
components can be created directly in Spin, or can be programmed using any Java programming
environment (such as WebGain Visual Cafe).

Timeline Behaviors

A timeline behavior is one that modifies the properties of one or more actors over time, similar to an
animation storyboard or a musical score.

A timeline can modify any property of any actor: you specify the values of a given property at certain
points along the timeline, and these values change accordingly when the behavior is activated. For
many types of properties (numeric values, colors) Spin can interpolate between values so that the

1-7

Spin User’s Guide

value changes smoothly as the timeline progresses. This interpolation can be done linearly, or with an
ease-in and ease-out feature.

A timeline behavior can be deactivated before it is finished executing,

Counter Behaviors

A counter bebavior is another way to manipulate occurrences over time. A counter behavior counts time,
starting when it is activated, and generates events at specified time intervals until it reaches the
specified stopping point.

A counter behavior can be deactivated before it is finished executing,

User Behaviors

A user behavior allows you to reuse any behavior you have defined by explicitly saving it as a behavior.
To save a complex behavior, you must define it as a set of pehaviors grouped together under a single
behavior (typically an action group behavior). You t ct the root behavior and choose File>Save
Behavior. The behavior then appears in the Inse ser BeRgvior menu item.

Data

1-8

P‘ \

val§gs of various types. For example, a variable can hold a name or the

Data variables allow@
color of a backgroung

ets you specify the following types of variables:
int, a 32-bit integer number

float, a 32-bit floating-point number

double, a 64-bit double precision floating point numbet

boolean, a Boolean value (true or false)

string, a string of characters

color, a color

Hashtable, a hash table (a key-value lookup table), also called a dictionary
Vector, a vector (growable array of objects)

Point, a x, y (2D) point

Rectangle, a (2D) rectangle

Dimension, a (2D) dimension (a width and height)

URL, an HTTP URL

o o o o oo oo oo oo g o

HttpCookie, an HTTP cookie

The Spin data variables are all either Java primitive types, or types defined in standard Java libraries
(such as java.util, java.awt, and java.net), with the exception of HttpCookie, which is a special Spin

data type.

Chapter 1: Basic Ideas

Java Expressions

Spin provides the ability to embed scripts written in the Java programming language in three ways:
O Java expressions can be evaluated to provide arguments to method calls in action behaviors.

O Boolean (true/false) expressions can be evaluated to control the activation and deactivation of any
kind of behavior, or as the test condition in a conditional behaviot.

O Sequences of Java statements can be executed in script behaviors.

Normally, compiled programming languages like Java are not used as scripting languages because of
the enormous difficulties compiling and linking scripts dynamically. Instead, dynamic interpreted
languages are used, but this invariably leads to performance problems. Spin solves the performance
problems by using a compiled language — and Spin can take advantage of future advances in
compilation techniques for Java, and so become even faster. In order to use a compiled language like
Java as a scripting language, Spin takes advantage of several advances in dynamic compilation and
linking techniques, so that scripts can be recompiled a linked even while your application is
running,

In addition, of the most powerful visual afghoring §ystems that do provide scripting capabilities, most

who wants to use scripts to lea

ajlable

P £
J Oj
3

the features and vast n@#bers of library functions available in Java.

and training materials a andard and popular language like Java. In addition, it is almost

guaranteed that a p langyage will be missing features and library functions found in a

standard programmi age. When you write a Java script for Spin, you can take advantage of all

To make Java more suitable for writing scripts, Spin adds several upwardly compatible features to Java:

O Spin dynamically resolves names so that scripts can reference other objects (actors, behaviors, and
data variables) and can set their values.

O Spin performs conversions between Java primitive types and their object counterparts. For
example, Spin integer data variables can be passed, without error, to methods that expect either
type i Nt or type | Nt eger . This vastly simplifies the Spin’s use of values without sacrificing
compatibility with the Java language.

O Spin automatically bundles scripts (both expressions and script behaviors) as automatically
generated method calls on automatically generated objects, as required by Java. This relieves the
overhead of programming for the Spin user.

The result is a powerful scripting language that is remarkably easy to use.

Capsules

Visual programming systems make it very easy to build small, toy applications, but make it virtually
impossible to build real, complex applications. To solve this problem, Spin organizes applications into
capsules. As indicated by the name, capsules are a visual metaphor for the encapsulation techniques
proven by object-oriented languages.

Spin User’s Guide

Capsules can contain actors, behaviors, data variables, and other capsules. When you create a capsule,
you are creating a new component (a JavaBean) that can be used, like any component, as an actor. The
use of capsules has several advantages:

O Spin allows you to build complex applications hierarchically.

O A capsule, like any component, can be reused in other applications.

O Capsules organize your work, allowing you to focus on one piece at a time.
|

A capsule has a well-defined interface that provides modularity. As long as the external interface
and behavior of a capsule does not change, you can change the internal implementation of a
capsule without affecting other parts of your application that use that capsule.

O Capsules help support collaboration. Multiple Spin users can work on the same application, as
long as each user works on a separate capsule.

Kinds of Capsules

O astand-alone application

an applet P
a servlet %
a JSP bean

a visual actor (a ¢ onent detived from the Java class Conponent)

A capsule can represent different kinds of thlng?«

o o o o O

a nonvisual actor (a component with no visible run-time representation)

The last two kinds of capsules, visual and nonvisual actors, create new components that can be used
as actors in other capsules.

JSP bean capsules create components that can be called from Java Server Pages (JSP), web pages that
contain embedded Java calls to provide dynamic output. Otherwise, capsules represent top-level
entities — either an application, applet, or servlet.

Application capsules can be used to create stand-alone, single-computer applications or the client
portion of client-server applications. Application capsules usually have their own user interface, built
using standard Java user interface widgets.

Applet capsules can be used to create applets that are downloaded over the Internet and run in a
browser. Note that Java compatibility and security is still an issue in major web browsers, so applets
are really usable only in intranets or other controlled environments.

Servlet capsules run on a web server and are the primary building blocks of web applications. Servlets
typically implement a “thin-client” user interface in HTML, which executes on a browser. Servlet
capsules can use Spin’s built-in web server for testing and debugging,

Chapter 1: Basic Ideas

Capsule Hierarchy

Items in a capsule are organized in a hierarchy, which you manipulate as an outline. The figure below
shows the outline view of a capsule.

2 & clock
@ Document
=l HTMLParagraph
o (@ HTMLText
< €| servietGetPost
@ I+l setContent
@ I+l sendDocument
2 HTMLParagraph11
@ @ HIMLText12
o I+l Actionl14

o (@ clock

Figure 1-1: Capsule outline vie

The capsule is at the top of the hierarchy. The regffaining lewgls of the hierarchy contain the capsule’s
children — actors, behaviors, and data variables th: ake up guts of the capsule. Just as in life, the
relationships parent and child are reciprodalN{ Actog A, for example, is the child of the capsule, then

that capsule is the parent of Act

e paftnt ofother actors, or perhaps of several behaviors. It is common for

e or more behaviors as children — those behaviors associated

with Actor A. These B prs are in turn the children of Actor A, and Actor A is their parent.

The capsule does not enforce any specific hierarchical relationships among its constituents. Any item
in the outline can be selected and moved up or down in the hierarchy. When you do so, its parent
changes.

The capsule outline is also one means of defining the order in which things execute. As described
previously, behaviors are activated by their triggering event. But if several behaviors have the same
triggering event, then they execute from top to bottom, according to their order in the outline view.

Aliases

Normally, actors, behaviors, and data variables are referenced by name. This limits reusability, since
the names would have to be changed manually to apply, for example, a behavior to a different actor.
To increase reusability, Spin provides three a/ases that can be used by behaviors to reference objects by
their position in the capsule hierarchy. These aliases are available from various menus as you define
behaviors. Their meanings are as follows:

parent This alias refers to the immediate parent of the current behavior, which might be the
capsule, an actor, or another behavior, of which this behavior is a child.

actor This alias refers to the nearest direct or indirect ancestor that is either an actor or, if
none is found, the capsule itself. If a behavior is the immediate child of an actor, this
alias refers to the same entity as par ent .

capsule This alias refers to the capsule that immediately contains the behavior.

Spin User’s Guide

To illustrate these aliases, imagine a capsule that contains one actor — a button — that has two
behaviors: one to implement an action when the button is pressed, and another to implement a
rollover effect to highlight the button when the cursor passes over it. Figure 1-2 shows the capsule
outline view for this example.

E rollover.zac Capsule Outhne

File Edit Insert “iew Outline Behavior

7 P Capsule =
77 O stopButton
o =l stopAction
2 [l rollover
o =l enter
o kel et

Action(Activate On:)

Figure 1-2: Capsule outline view tto\with children behaviors

Note that the rollover behavior ¥ a coplex behavior whose root is an action group, which itself has

: on® to execute when the mouse enters the button and one for when it
exits. In the exit beha e alias par ent refers to the rollover behavior, the alias act Or refers to
the St opBut t on act3 and the alias capsul e refers to the capsule named Capsul e.

In the r ol | over behavior, the aliases par ent and act or both refer to the button named

st opBut t on. Using aliases in behaviors, rather than referring to entities by name, makes it easier to
reuse behaviors. For example, by using aliases you could move the I 0l | over behavior onto another
button (say, 2 new one named St ar t But t on), without having to change any names inside the
behaviors.

Note that when you use a behavior to connect two actors, the behavior can be the child of only one of
the two actors. For example, a behavior can be used to connect the button to an animated object, such
as a juggler, so that the object starts moving when the button is pressed. In this case, the behavior can
be the child of either the button or of the juggler. If the behavior is a child of the button, then the
alias act or refers to the button, but the juggler must be named explicitly. If the behavior is a child of
the juggler, then the alias act or refers to the juggler, but the button must be named explicitly. How
you organize your capsules is a design issue. Since it is likely that several buttons will be used to
control the juggler, it is probably better to make the behavior a child of the button so that you can
reuse the behavior on multiple buttons.

Chapter 1: Basic Ideas

Editors and Views

Editors are used to edit the contents of capsules — to add, delete, or modify the items they contain.
We have already seen the outline editor of a capsule, but the outline editor is only one of several
possible editors (or views). Different editors and views provide different functionality, and make it
easier to build applications using Spin.

Kinds of Editors and Views

The views and editors in Spin are:

0O The project editor, shown in Figure 1-3, allows you to otganize the many files (capsules,
HTML and JSP web pages, images, and so on.) that make up an application. It lets you set
preferences and keep track of database connections. These preferences allow you to specify a
directory (in addition to Spin’s does directory) that the Get Info command can use to find
documentation. You can also specify parameters which you can test the servlets you build.

-

E /myProject_zap Froject Hi=1E3

File Edit Project “iew

@ ralloverzac
@ tutarial.zac

Figure 1-3: Project editor

Spin User’s Guide

O The capsule outline editor, shown in Figure 1-4, shows the hierarchical view of a capsule. It
allows you to add or remove components from a capsule, change their position in the hierarchy,
and edit individual actors, behaviors, and data variables.

r'; bugdb.zac Capsule Outline _ = | Ellil

File Edit Inzert “iew Outline Actor

displavError
displayMotFound

2 9 bugdb -
o [E isMew
o [& buglD
o [AH errorSting
o [displayFind
B CEEEEE
[[displayResults
L el doGet
b [g| doPost
b
b

| <]

JS5PTemplate

@ e 1-4 Capsule outline editor

The toybox editor, shown in Figure 1-5, is primarily useful for applications with a graphical
user interface, such as capsules containing visual actors. It is not used for servlets. The toybox
editor allows you to edit your application while it runs. You can use this editor to change
components’ properties, to add, delete, or modify behaviors, and to see the results of your work
instantly.

O

Each component in the toybox view appears with an editing handle that you can use to move or
resize the component, or to select it for some other operation. These editing handles also reveal
helpful status information, such as the location of a component you are moving, or the behaviors
that are the immediate children of the component. You can double-click on these behaviors to
edit them from the toybox, instead of the outline editor.

You can hide the editing handles and the toybox grid to see what your application will look like
without them. You do this using the View>Hide/Show Editor command in the toybox window.

Chapter 1: Basic Ideas

E tutorial.zac Capsule Toybox

Fil= Edit Inzed ‘“iew
:‘ Start

l+=llE]

startButton é

=l

hov M Ereq A

Figuge,1-5: e}tor

O The run view, in
will see it.

-6, compiles and runs an application capsule exactly as a user

:‘ Start

]

Figure 1-6: Run view

0 The layout editor, shown in Figure 1-7, allows you to view and edit the layout of scenes ot
other visible components, such as windows, that are subclasses of a container. A scene is a view
with one or more components ordered from back to front that change according to time or user
input. Scenes are useful for creating animations or laying out user interfaces.

Spin User’s Guide

™ tutorial.zac Selection Layout
File Edit Inzert “iew

Figure 1-7: t ;or

O The browser view of a §gfvlefygenerated by Spin’s built-in web server, allows you to view the

HTML output§ ervie§capsule in a standard web browser as you build it.

In addition, Spin proviggs®ditors for all actors (components) and data types.

Edit as You Run

Spin runs your application continuously as you build it. There are no separate edit, compile, and run
steps to see the results of your work. When you have an idea, nothing prevents you from seeing
immediately whether it works — and if it does not work, you can play with it until it does.

The ability to work with a running application is one of Spin’s most powerful features; it can feel like
the difference between being able to hold an item directly in your hands versus having to work with
robot arms.

The toybox view is used to run an application capsule while you edit it. For servlet capsules, you use
the debug web server to view the HTML output from your servlet while you edit it.

Debugging

Because Spin runs your application as you work on it, Spin encourages you to experiment. Sometimes
that leads to mistakes. In addition, errors can occur in the Java expressions you add to behaviors in
various places, or in the blocks of Java code you add as script behaviors. Spin provides the following

debugging tools:

Chapter 1: Basic Ideas

When Spin encounters a bug in your application, one or more error messages appear in a pop-up
error window. Click on an error message, and Spin opens the editor for the behavior that contains
the error.

Spin has a console window to which it writes certain kinds of error messages. You can also use this
console for displaying debugging statements. For example, if you want to know when a certain
script is executing, you can add a line to the script such as the following:

Systemout. println("now executing Script A");

Leave the console window open while you run, and you can determine whether the compiler
reaches your debugging statement.

The Spin debugger allows you to set breakpoints, single-step through your application one
behavior at a time, and view the values of data items as they change. An arrow in the outline view
shows you where the compiler has stopped, and a debug window allows you to inspect the values
of any data variables you have asked to watch. You can see when the data variables change, and

what they hold at any time.

Spin User’s Guide

Building a Web Application

Spin allows you to create applications whose functionality can be distributed across any of several
pieces: servlets running on a web server, applets running on a client browser, or stand-alone
applications. This chapter describes how to use Spin to create servlets: applications that run on a web
server and respond to requests from remote client brow;

This chapter covers the following topics:

O What Web Applications Do ?
O A Simple Servlet
O Additional Form- ing

What Web Applicatisns Do

As explained in Chapter 1, web applications allow users to interact with web servers in ways that are
much more powerful than displaying static, HTML-coded information. Web applications provide the
difference between masses of linked, but static, information and customized, real-time data generated
in response to the actions of a specific user.

Web applications provide the truly interactive experience we have come to expect from the World
Wide Web. Search engines, online storefronts, and web sites that provide weather forecasts are all
examples of web applications. The applications you design determine a web uset’s experience when
that user explores your data, product line, or services.

Your challenge is to build a web application that responds and adapts to broad ranges of queries,
offers richly detailed information, behaves flexibly, and allows users to meet their needs. The ideal
system responds with unique pages for each request. A servlet constructs appropriate responses to
requests as they stream in. This chapter explains how to use Spin to build servlets.

URLs

The main mechanism by which browsers find web servers is the URL. Consider the following
minimal example:

http://ww. webgai n. com

2-1

Spin User’s Guide

2-2

A URL consists of at least:
O the protocol to use for the connection (in this case, ht t p), and

O the name of the web server (in this case, Www. webgai n. com.

These are separated by a colon and two forward slashes : / / and ended with a forward slash /

protocol A request for a web page uses HT TP, Hypertext Transfer Protocol. Other possible
protocols are FTP for direct file transfers, or MAIL for e-mail.

web server The name of the Internet host computer that functions as the web server. A web
server is not actually identified by name, but by IP address — a set of four numbers
separated with decimal points, such as 192.168.24.55. The Domain Naming Service
(DNYS), a global Internet facility, translates web server names into IP addresses for
you.

In addition, URLs can specify a particular web page:
http: // ww. webgai n. cont | ogi n. ht n

In the URL above, | 0gi n. ht M specifies the gp€cific pa8e requested. A single forward slash /
separates the server name from the page name. I pecific®page is requested, the default page —
usually a page named i ndex. ht m or aul thht m s served.

URL:s can also specify a port:

http://ww. webgeimg, corm 81/%ogi n. ht

On any given machi @ ent protocols listen at different ports. A port number identifies a specific
service on a machine, sg@éling requests to the protocol for which they are intended. By default, a web
server listens for HTTP requests at port 80. If a web server is configured to listen at another port, the
URL must include a colon after the server name, followed by the port number.

Chapter 2: Building a Web Application

All of the above merely sends a web page: the problem is to build them dynamically. In order to
respond to queries from the user, you have to be able to get queries from the user. Users tell you what
they want to know more about by filling out forms:

; Login - Microsoft Internet Explorer

File Edit “iew Favortes Toolz Help -

" @ B & Q G @ E

Back Stop Refresh Home Search Fawvortez Histon b il
.-‘-‘-.gldress| kittp: A flocalhost B0/ servietogin j @ Go Links @

=

Login: filippdl

@ Diore 3'! Local intranet

Each field in the form is a parameter: a name for the field, and a value (whatever the user enters in it).
All these names — as well as other fields in other forms your servlet may specify — define the set of
named parameters for your servlet.

The above login page constructs the URL below:
http://ww. webgai n. com | ogi n. ht ml ?user=fili ppo

parameters Separated from the page by a question mark, the parameter name (US€T) is
followed by an equals sign, then the value (fi | i ppo).

You can string more parameters together with ampersands, like this:
http://ww. webgai n. com | ogi n. ht m ?user=fili ppo&passwor d=*****
URLs thus do a lot of work. They can specify:
O the protocol
the web server
a special port

a specific page

O o o O

the name-value pairs of any relevant parameters

2-3

Spin User’s Guide

Requests

Hypertext Transfer Protocol (HTTP) defines various types of requests to allow a range of interaction
between web servers and browsers. The request type is encoded not in the URL, but elsewhere, and is
therefore invisible to users. In most interactions with servlets, however, the browser’s request is either
of type GET or POST. Both GET and POST can originate from any kind of web page, including a
form. These two requests are very similar:

0 GET sends a URL; parameters, if any, are appended to the end of the URL, where they are visible
to usets.

O POST sends a URL; parameters are sent in a separate part of the request, where they are not
visible to users.

The URL has a length limit. The specific limit depends on the web server, but 256 characters is
typical. Therefore, there is a limit to the number of parameter name-value pairs you can send in one
GET request. Also, if one of the parameters is, for examplega password, you might not wish its value
to be displayed in plain text in the URL of a web brows€f{T'hese are the main reasons to use POST
instead of GET.

The web server responds to either requesvv sendMyg the requested document and, if necessary,

updating parameters.

R A d
Sessions E

Most web applications W#olve more than one servlet. For example, e-commerce applications often
have one or more servlets to allow customers to select items and place them in their shopping carts,
and other servlets to pay for the items and ship them. If Filippo and Amaia are both shopping at the
same time, the servlets must be able to keep their interactions separate.

Servlets use sessions to identify which user is sending a request. To a web server, each session is
identified in some unique way, usually with an identification number. The session is typically
implemented as a hash table that contains the data (the name and value of each parameter) for the
session. For example, the session for an e-commerce application could contain the customer’s
shopping basket, shipping address, and other user-specific information. Various servlets in an
application can access the session and store information in it.

When a servlet receives a GET or POST request, it must be able to identify the session to which the
request belongs. The servlet can do this in either of two ways:

O The servlet can rewrite each URL on each HTML page it generates, appending a parameter
containing the session identifier.

Or:
O The servlet can send a cwokie containing the session identifier to the browser and receive it back
again with each request. A cookie is a text file, sent by the web server, that a web browser saves

and sends back with each request. It can contain a session identifier, as in this example, or any
other information the server may need to store on the client.

Chapter 2: Building a Web Application

Thus, the application is able to retrieve the session identifier, either as a parameter or from the cookie,
and access the current session’s hash table. Common web servers allow you to specify which
mechanism to use to identify sessions.

Note: Some older browsers do not support cookies, and browser users are able to disable cookies if
they wish.

Depending how your web server is set up, and whether cookies are allowed by the uset’s web browser,
Spin automatically takes care of rewriting URLs or storing and retrieving cookies so it can retrieve the
correct session for you. All you need to do is to define session parameters and use them to store
information that must be associated with a particular user.

Responses

Just as the first part of a URL specifies the protocol — thegules used to interpret the rest of the URL
— when a web server responds with a document, the

iece specifies the rules used to interpret
the document’s content type. Content type is als led MBYE (Multipurpose Internet Mail
Extension) type. After sending the MIME type, t eb server sends the contents. After sending a
MIME type of HTML text, for example, eb s&ver would send an HTML document.

Building

a Simple g\]

When you use Spin to servlets, you typically build HTML documents using Spin’s HTML
components. These are described in detail below, but familiarity with HTML can help a great deal. For
an elementary introduction to HTML, see:

http://ww. gettingstarted. net

Yahoo’s index of all HTML tutorials can be found at:

http://yahoo. conf Conput ers_and_| nt er net/ Dat a_For nat s/ HTM./
Qui des_and_Tutorial s

Also helpful are HTML references at:
http://yahoo. conf Conput ers_and_I nt er net/ Dat a_For mat s/ HTM./ Ref er ence

Spin can construct HTML documents using the HTML components described in Table 2-1.

Table 2-1: Spin HTML Components

Spin HTML Component Icon Corresponding HTML Tag(s)
Documents HTMLDocument <HTML> </ HTML> <TI TLE> </ TI TLE>
<HEAD> </ HEAD> <BODY> </ BODY>
Lists HTMLList </ UL> </ OL> <DL> </ DL>
HTMLListItem </ LI > <DD> </ DD> <DT> </ DT>

2-5

Spin User’s Guide

Table 2-1: Spin HTML Components

Spin HTML Component Icon Corresponding HTML Tag(s)
Tables HTMLTable <TABLE> </ TABLE>
HTMLTableRow <TR> </ TR>
HTMLTableCell <TD> </ TD> <TH> </ TH>
Forms HTMLForm <FORW> </ FORW>
HTMLFormlInput <I NPUT>
HTMLFormSelect <SELECT> </ SELECT>
HTMLFormSelectOpt <OPTI ON> </ OPTI ON>
HTMLFormTextArea <TEXTAREA> </ TEXTAREA>
Other containers HTMLHeading <H1> </ Hl> €. <H6> </ H6>
HTMLParagraph <P> <>
HTMLAnchor </
HTMLBlock < QUOTE> </ BLOCKQUOTE>
<Bl V> </ Dl V>
HTMLFontStyle </ FONT>
HTMLTextStyle <BIG </BIG <CIT> </ T>

<CODE> </ CODE> <DFN> </ DFN> </ EM>
<|> </|> <KBD> </ KBD> <SAMP> </ SAMP>
<SMALL> </ SMALL> <STRI KE> </ STRI KE>
 </ STRONG> <SUB> </ SUB>

<SUP> </ SUP> <TT> </ TT> <U> </ U>
<VAR> </ VAR>

Other
noncontainers HTMLHotizontalRule <HR>
HTMLImage <| M&
HTMLLineBreak

HTMLText A string of characters
Execution control HTMLDoMultiple Outputs a chunk of HTML any number of times, as specified by
the behaviors.
HTMLRepeater Repeats output of all child components the specified number of
times.

When you install Spin, it places the Spi nHTM.. j ar file in the beans subditectory of the Spi n
directory. These beans implement the Spin HTML components, as well as supporting classes and
resources, especially component editors allowing you to set and change bean properties.

Chapter 2: Building a Web Application

Spin’s HTML components open a text stream and write the corresponding tag, or pairs of tags, in that
part of the document corresponding to their place in the execution order of the servlet. HTML
nesting corresponds to the child-parent hierarchy of the Spin components: for example, Spin nests a
list item tag between a list start and list end tag when the HTMLListItem is a
child of the HTMLList. You must ensure that the Spin hierarchy follows the rules of a proper HTML
hierarchy; for example, all HTML components except HTMLDocument must be either direct children
of HTMLDocument, or else more distant descendants.

In the editor for every HTML component, there is an HTMLElement tab. The settings in the editor
provide another mechanism to change the flow of control in your application dynamically. By default,
the tag for an HTML element is enabled, and so are the tags, if any, of its child elements. To suppress
the output of the tag produced by an HTML component, set TagEnabled to false. To suppress the
processing of any children of this HTML component, set TreeEnabled to false. Coupled with a
conditional statement, these settings can be useful for producing different HTML under different

g\
N

conditions.

o

2-7

Spin User’s Guide

Set Up for Testing

For testing and debugging your servlet, as well as to run the examples in this chapter, Spin has a built-
in web server. Its initial page provides a link to every Spin servlet currently open. Figure 2-2 shows
Spin’s built-in web server.

“J Spin Server Results - Microzoft Internet Explorer

File Edit “iew Favortes Toolz Help -

& @ B & Q @ @ B 9 H

Back Stop Refresh Home Search Favortes Higtory il Frint Edit
Agdress| hitp: /Alocalhast 204 j @ Go || Links ®

I

Spin Server Results

These were the request headers sent:

GET / HTTP/1.1

Rccept: */%

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT;
Host: localhost:s0

Connection: Keep-Zlive

Parameters =

Servlet: /servlet/clock Parameters.. |

Servlet: /servlet/login _ Paramsters |

Servlet: /servlet/simple servlet Paramsters..

&] Done 3 Iy Computer

Figure 2-2: Spin’s Built-in Web Server

To use the built-in web server, you need to set certain preferences. To enable Spin’s built-in web
server, follow these steps:

1 Edit > Preferences

2 Click the DebugServer tab.

3 Set WebServerEnabled to true.
4

By default, ServerPort is set to 80, the default port for web servers. If a web server is already

running on your machine, use another value, such as 90 (for Windows or Macintosh) or 8080
(for UNIX).

Chapter 2: Building a Web Application

Note: Do not use a port number that is being used by some other protocol.

5 In order to construct the initial page of links, Spin’s web server needs to know where to look
for running servlets. By default, Ser vl et AccessDi r ect ory is set to a virtual directory
called ser vl et . This does not refer to any actual directory on the local file system; instead,
it refers to only the name you type in the browser in order to open the initial web page. If you
wish to run servlets from another location instead, specify its relative pathname here.

6 Spin also has to know where to look for images ot other resources. By default,
URLOr Di rect or yFor NonSer vl et Request s is set to a directory called
publ i c_ht M , inside the Spin installation directory. If you wish to stote such resources in
another location instead, specify its URL or its full or relative pathname here. Relative
pathnames are interpreted relative to the Spin installation directory. If you use a URL, it must
start with ht tp: / /.

7 For debugging purposes, Spin lets you pass parameters from the servlet to the browser.
Nunber Of Post Par anet er s lets you specify the gumber presented to you through
Spin’s built-in web server parameters page. To ru
this.

examples, you do not need to change

8 To view any servlets you’re working gn, open§gbur favorite web browser to this page:

http://Iocal host/

If you’ve changed the po er ingtep , add a colon and the correct port number. For
example:
http://1 00@90/

Note: Some browsersWfisinterpret the name | 0cal host and try to open www. | ocal host . com
If you encounter this behavior, use the IP address instead of the name; open your browser to 127.0.0.1

9 Click on the link to the servlet of interest to view the page that it is cutrently sending.

If you wish, you can run Spin’s debugging web server on another computer. To do so in this case,
open the browser to ht t p: / / machi neName: 80, substituting the correct name for
machi neNane.

The following sections show you how to build a simple servlet by:
O “Producing a Web Page”

O “Adding Dynamic Content”

0 “Adding a Simple Form”
|

“Using a Template”

Producing a Web Page

To produce a simple web page:

1 File > New Capsule
2 Capsule > Edit Properties

3 Under Type, select Java Servlet.

2-9

Spin User’s Guide

2-10

10
11

12

13

Insert > com.webgain.spin.html > HTMLDocument

Double-click the HTMLDocument icon to invoke its editor. The fields you see map to tags,
generally those associated with HTML <BODY> tags. Navigate to the background color
editor and click the radio button labeled Value, then double-click the background color to
invoke the color editor. Choose a pleasant background shade. (Make sure it is light so that
black text is visible on it, or else click on the text color and change that, too).

In the Title: field, type Hel | o Ser vl et Click OK to dismiss the editor when you’re done.
Insert > com.webgain.spin.html > HTMLParagraph. Make sure it is a child of the document.
Insert > com.webgain.spin.html > HTMLText. Make sure it is a child of the paragraph.

Double-click the HTMLText icon to invoke its editor. You’ll see a field labeled Text:. Enter
Hel |l o, worl d!

You have now built the nested structure of an HITML document, but have not yet caused
anything to happen.

Select the HTMLDocument component.

Insert > User Behavior > ServletGet. Make sure,it®s fchild of the document.

In response to a GET request, servlets mus eir cogtent type, then send their contents.

When you expand the user behavior §grvietGat, you see it consists of two actions to do these
things. ServletGet is provided as a ¢ i

components by using th I an

apsul e aliases: you can add ServletGet without

modification to any servle Oofe as"you make the user behavior a child of the document.
If it is not a ch

. ¢ ‘
send its rnessag

Open the editor for ServletGet and examine its stimulus: it responds when the capsule
generates the event Ser vl et Request . doGet . This event represents the servlet
receiving a request of type GET from a browser. The capsule knows how to generate this

docl¥nent, all you need to change is the action sendDocument —
pecific document instead of to the alias act or.

event because we made it of type Java servlet.

Now is a good time to save your file. Choose File > Save As.... Name it
si nmpl ePage. zac.

Chapter 2: Building a Web Application

14 Now open a browser on | ocal host , and click the link for Si npl ePage to see the
document that contains one paragraph saying Hello, world! and the background color you
chose.

<} Hello Servlet - Microzoft Internet Explorer
File Edit “iew Favoites Toolz Help -

= @ &N o Q &G 7

Back Stop Refresh Home Search Fawvorites

Address | http: /localhost 80/ zerviet/simplePage j Lf'{)GD Links **
=

Hello, world!

&] Done _!'g Local intraret

Here’s what happened:

You loaded the page in your browser.

2 The browser sent a GET request to the setver, in this case, | 0cal host , Spin’s built-in web
server.

3 The specified capsule Si Mpl ePage. zac responded by generating the event
Ser vl et Request . doGet .

4 The user behavior ServletGet triggered, generating the event Behavi or . acti vat ed.

5 Set Cont ent and SendDocunent , its two children actions, both triggered on
par ent . Behavi or. acti vat ed.

Because they both trigger on the same event, the capsule hierarchy’s other flow of control
mechanism comes into play: the action above executes first, then the one below it.

a Set Cont ent tells the capsule (the setvlet) that the response type is HTML text.

b SendDocument sends the document (actor) to the servlet’s (the capsule’s) output stream
(aprintWiter in Java terms).

Spin User’s Guide

To see the document you built, return to your web browser and view the page source:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 3.2 FI NAL//EN'>
<HTM.>

<HEAD>

<TITLE>Hel | o Servlet</TI TLE>

</ HEAD>

<BODY BGCOLOR="#f 9cadf " > (your color will vary)

<P>Hel l o, world!</P>

</ BODY>

</ HTM.>

As you can seeg, it’s built from the HTMLDocument, HTMLParagraph, and HTMLText components
you inserted. Nice background, nice sentiment—but you could build the same page with a text editor.
Now let’s add some dynamic content.

Adding Dynamic Content

We can easily add content that cha

1 Open a capsule view on Si ePag

2 Select the document com

3 Insert > com.wgb pin.hfnl > HTMLParagraph. Make sure it is a child of the document.

4 |Insert > com.wein.html > HTMLText. Make sure it is a child of the new paragraph.

5 Select the capsule.

6 Insert > com.webgain.spin.misc > clock. Make sure it is a child of the capsule. A clock is a
component that responds with appropriate output to the message get Current Ti me() .
Rename it ¢l ock.

8 Reselect the text component.

9 Insert > Behavior > Action. Make sure it is a child of the text.
10 Edit the action as shown:
a Set the stimulus:
Activat eOn act or. WhenCQut put . whenCQut put
The action’s actor is the text component. This action triggers when the text is output.
b Set the response:

Send To: actor

Message: set Text

Dat a: (String)

Wt h=cl ock. get Current Ti ne()

Click on the button labeled Wt h: to change it to W t h= and enable the popup menu with
the appropriate messages.

The action now sets its text to be whatever the clock outputs when it receives
getCurrent Ti me().

11 Save your work.

2-12

Chapter 2: Building a Web Application

12

13

Now reload your browser to see:

<} Hello Servlet - Microzoft Internet Explorer
File Edit “iew Favoites Toolz Help
i [@ a 7
Back Stop Refresh Home Search
.&.gldress| kittp: Adlocalhost: B0/ serviet AsimpleP age j @ Go Links @
I
Hello, world!
Wed Aug 23 11:16:57 PDT 2000
I
&] Done _!ﬂ Local intranet

This time, the pMce includes a second paragraph:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 3.2 FI NAL//EN'>
<HTM.>

<HEAD>

<TI TLE>Hel | 0 Servl et</TI TLE>

</ HEAD>

<BODY BGCOLOR="#f 9cadf ">

<P>Hel | o, world!</P>

<P>Wed Aug 23 11:16:57 PDT 2000</ P> (your time will vary)

</ BODY>

</ HTML>

Reload the browser again to see the clock change. The content is now dynamic, but it’s still
quite simple. Let’s enable some interaction with a simple form.

2-13

Spin User’s Guide

Adding a Simple Form

Next we’ll add a simple form to the web page: one input field and a Submit button.

1
2

10

2-14

Open a capsule view on Si npl ePage. zac, if one is not already open.

Delete the paragraph that is a parent of the clock, and all its children. Choose Actor > Delete.
Your outline now appears as shown below:

E_- simplePage.zac Capzule Outline
File Edit Inzert “iew Ouline Capsule

ey o] &[] #] o oo] o7 2

2 P Capsulg
2 [l HTMLDocumentz
2 HTMLParagraph3
o [E HTMLTexd
7 8] ServetGet
o =l zetContent
2 =l sendDocument

CapsuleSenletClass

Insert > com.weljgain.gpin.html > HTMLParagraph. Make sure it is a child of the document.

Insert > com.webgain.spin.html > HTMLText. Make sure it is a child of the paragraph you just
inserted.

Select the document again. Insert > com.webgain.spin.html > HTMLHorizontalRule. Make sure
it is a child of the document.

Select the document again. Insert > com.webgain.spin.html > HTMLParagraph. Make sure it is
a child of the document.

Insert > com.webgain.spin.html > HTMLForm. Make sure it is a child of the paragraph you just
inserted.

Insert > com.webgain.spin.html > HTMLFormInput. Make sure it is a child of the form you just
inserted.

Select the form again. Insert > com.webgain.spin.html > HTMLFormInput. Make sure it is a
child of the form.

Chapter 2: Building a Web Application

You’ve now added all the elements we’ll need, and the outline appears as shown below:

l’i_‘. simplePage.zac Capsule Dutline

File Edit Insert “iew Outline Actor

Dty s | @@ [b B [el
v C’ Capsule B
7 HTMLDocument2
v HTMLFParagraph3
o @ HTMLTexs
7 [&l ServietGet
o el setContent
o M=l sendDocument
v HTMLFaragrapha
o [E HTMLTexs
o & HTMLHorizontalRule10
v HTMLParagraph11
< [@ HTMLForm1z
o @ HTMLForminput! 3
o @ HTMLFarminput! 4|

HTMLForminput

11 Double-click t icon to invoke its editor. It appears open to the HTMLForm
tab. Check the ra ton to change the HTTP method to POST:

% Edit: HTMLForm12

HTMLF arm |HTI‘u1LEIement|

Aution: |

Hitphlethod:

| Ok | Apply Cancel

2-15

Spin User’s Guide

12 The form updates its page using the HTTP method POST, but out ServletGet behavior only
produces output in response to a GET request type. We must correct this. Double-click the
icon representing the ServletGet user behavior to invoke its editor.

E simplePage.zac ActionGroup: ServletGet [l[=]

File Edit

Sti rmulus 'ﬂ:

= activate On = | capsule. SenletRequest.docet [+

13 Click the plus sign in the uppert right corner to add another stimulus.
14 From the drop-down menu, add the stimulus:

Acti vat eOn capsul e. Servl et Request . doPost

E simplePage.zac ActionGroup: ServletGet =] E3

File Edit

Sti mulus 4}’

=|Al::ti1.rate On = | capsule.ServletRequest.doGet [
=|Acti1rate On =||capsule.SenletRequest.doPost

N\
15 Now the behavi@¢ resp@nds to either a GET or a POST request type. Close the editor and
rename ServletGe ervletGetAndPost so its name reflects its new behavior. The two child

actions do not need to change.

16 Now edit the topmost of the two form inputs you added. This one represents the text field
that allows the user to enter some text.

a Leave Align set to DEFAULT to specify a default alignment for the form field.
b Leave Checked to false—the form field won’ be checked.

¢ Leave the Maxlength set to 0, specifying that there’s no maximum length to the text that
the user can enter.

d The Name is the handle by which we’ll be able to refer to the value that the user types in.
Enter user Par anet er .

e Leave the Size also set to 0, specifying the default length for the field.

f Leave the Src empty as well. (If we were displaying, for example, an image in this form,
here’s where we’d specify the path to it.)

g If necessary, set the Type to TEXT to make it a text field.

2-16

Chapter 2: Building a Web Application

h Leave the Value empty, indicating no default text will appear in the field. The editor now
appears as follows:

¥ Edit: HTMLForminput13

HTMLF orminput | HTMLElement |

Align: |DEFAULT j

Checked: § true (@ false

Ml axlength: |EI |

Hame: |u5&rF’arameter| |

Size: [0 |
s | |
Type: |TEXT j
Value: | |

| Ok | Apply Cancel |

\
i Click OK to dismiss it.

17 Now edit the second of the two form inputs. This one represents the Submit button.
a Set the Type to SUBMIT.

b Set the value to Submit: this represents the button label.

Spin User’s Guide

c Leave all the other fields at their defaults. The editor now looks like this:

¥ Edit: HTMLFormInputi4

HTMLForminput | HTMLElement

Align: |DEFAULT j

Checked: § tue (@ false

Maxlength: |0 |
Name: | |
Size: [0 |
e | |
Type: [SUBMIT -

Walue: |Suhmiﬂ |

akK | Apply Cancel |

18 The formis readMow have to tell the servlet to expect a parameter. Select the capsule to
get a Capsule menu, then choose Capsule > Edit Properties.

19 Click the tab labeled Servlet Parameters.
20 Click Add....

21 In the resulting dialog, enter the name you entered for the text field: user Par anet er.
Make sure the two names match exactly, in both spelling and capitalization.

e Capszule Properties

T1,r|:ue| F'ru:upertiesl Methndsl Ewents SendetParameters |

userP arameter

Add...

Femowe

Fename Parameter...

Cloze

2-18

Chapter 2: Building a Web Application

22
23

24
25

26
27

Close both the dialog and the editor.

Only one final task remains, to get the second paragraph to print what the user entered. Select
the text you inserted previously.

Insert > Behavior > Action. Make sure it is a child of the text component.
Edit the action so it appears as shown:
a Set the stimulus:
Acti vat eOn parent. WienQut put . whenQut put
The action’s parent is the text component. This action triggers when the text is output.
b Set the response:

Send To: actor
Message: set Text
Dat a: (St ring)
W t h=capsul e. get Par anet er (" user Par aneter")
The action’s actor is also the text component; this sets its text to be whatever the user enters into

the text field.
Save your work.

Open a browser on | 0ocal host , if necessaf§gfind click'si npl ePage. (Or click the reload
button, if it’s already open) You’ ll se

J Hello Servlet - Hicmsuft Internet Ezxplorer
File Edit “iew Favortes Toolr Help -

& ®@ B 4 @ Qa 7

Back Stop Refresh Home Search

.-'f-.gldress| http: A localhost B0Azerviet simpleP age j @ Go Links @
=

Hello, world!

Submit

I

@ Done _!'_-J, Local intraret

28 Enter some text into the text field and click Submit. The text you entered appeats in the

second paragraph, above the horizontal rule.

2-19

Spin User’s Guide

View the page source if you wish to see the document your capsule has now produced:

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 3.2 FI NAL//EN"'>
<HTM_>

<HEAD>

<TI TLE>Hel | 0 Servl et</TITLE>

</ HEAD>

<BODY BGCOLOR="#f 9cadf ">

<P>Hel | 0, worl d!</P>

<P>This is the forest primeval.</P> (ourtextwill vary)
<HR W DTH="100% >

<P><FORM METHOD="POST" ACTI ON="si npl e_servlet">
<I NPUT TYPE="TEXT" NAME="user Paraneter">

<I NPUT VALUE="Subm t" TYPE="SUBM T">

</ FORW>

</ P>

</ BODY>
</ HTM_> ?

Using a Template

2-20

The above application has the f simplicity, but it also has a significant drawback — it mixes

page design with appi a logi®, For such a small and simple application, this may not be a problem,

but for larger and m plex applications, it is less confusing to separate presentation from

application logic.

Even if a page design is relatively simple, a web site with dozens or even hundreds of pages is not. If
most or all of these pages use just one or a few of the same basic designs, it is far more efficient to
implement presentation in a template that you can reuse as needed.

Accessing a Database

Data is only useful when people can access it. Web applications in particular typically gain great utility
if they provide access to a database. For example, your employer probably maintains a Human
Resources database which holds, among other data, the number of vacation hours you have accrued.
To find out how many vacation hours you currently havegfou could call the company HR department
and ask. Depending on how busy they are, this coulginvole a time-consuming round of phone tag;
even if they’re not busy, this solution still require an Bging to look up the data and answer you.
How much more efficient it is to log intoghe comfany Intranet and look up the data yourself.

Spin allows you to build applicasi®hyg that ss any database having a Java DataBase
incliides the JDBC-ODBC bridge, which allows Spin to access
D#gaBas€ Connectivity (ODBC) driver. With both JDBC and ODBC,

ing databases.

you can access nearlja

To build a Spin applicatfon with database access:

1 Define database connections ot pools of connections.
2 Build SQL statements with SQL components.

3 Build behaviors to execute the SQL statements and handle the results.

For your convenience in development and testing, Spin ships with a single-user copy of the PointBase
relational database and example data. For documentation and examples, see the directory named
poi nt base in the Spin installation directory.

This chapter covers the following topics:
O Accessing the Built-in Database
Building SQL Statements
Executing SQL Statements

Connecting to a Database

O o o O

For More Information

3-1

Spin User’s Guide

Accessing the Built-in Database

Spin comes bundled with an evaluation copy of the PointBase relational database server and
associated client Java software for you to use while developing and testing database-enabled
applications. This evaluation database includes example data from both PointBase and Spin.

Note: You must enable PointBase in order to run the database examples.

To use the PointBase server while working in Spin:
Edit > Preferences.
Click the General tab, if necessary.

Set the property Poi nt BaseSer ver LoadsAt Start totrue.

H WO N -

Restart Spin. The console displays the following message:

Server started, listening on port 9 , display level: 0 ...
To use the PointBase Server as a separate applic

1 Double-click the Pointbase Server ic

On Windows platforms, thiss
installation folder, as well

n is | awn the poi Nt base folder inside the Spin
¢ pr@gram group you specified when you installed Spin

(accessible fro

Sgart
On the Macinto con is located in the poi Nt base folder inside the Spin installation

folder, as well as 1 ¥ Apple menu if you chose to have aliases placed there.

On UNIX platforms, the script Poi nt Base Ser ver . sh is installed in the Spin installation
directory. You must edit this script to conform with your Java installation before you can run the
PointBase Server as a separate application.

Note: To deploy a PointBase server in a released application, you must putchase a fully licensed
version from PointBase.

Browsing Connections

3-2

Spin comes with several predefined connections to the built-in database, as well as certain example
data. To view the properties of these predefined connections and the example data:

1 File > SOL Connections... . The Connection Browser appears.

2 Choose a connection a user name, and a2 URL.

Chapter 3: Accessing a Database

3 In otder for you to view connection propetties and data, the Connection Browset connects to
the database when you click the button labeled Details.

SAL Connection Browser

Connections Databaze Objects
Connection Name

sample Chooze

Tables |Wiews Proceduresl

FUBLIC.CUSTOMER_TBL

Username FUBLIC.DISCOUNT_CODE_TEL

FUBLIC FUBLIC.MANUFACTURE_TBL

W s Connections FUBLIC.MICRO_MARKETS_TBL

B FUBLIC.OFFICE_TEL
FUBLIC.OFFICE_TYPE_CODE_TEL

URL

FUBLIC.ORDER_TBL
FUBLIC.PRODUCT_CODE_TBL

i FUBLIC. PRODUCT_TBL
| [betails | PUBLIC.SALES_REF_THL
PUBLIC. SALES_TAX_CODE_TEL

jdbcpointbaze:fflocalhostizample

Connection Details

rMetaData Inquiny rDEIMS Types rDEIMS Functions

Method [Return]
getlURL jdbecpointbaze:fflocalhostizample
getlzeriame FUBLIC
getDatabazeProductName FointBase
getDatabazeProductersion 3.1 RE Build 3001
getDriverName FointBase JDBC Driver
getDriverfersion 3.1 RE Build 3001
getCatalogTerm CATALOG
getSchemaTerm SCHEMA
supporntsStoredProcedures true |
aetProcedureTerm PROCEDURE bl
v

Note: The Connection Browser is a convenience for viewing database properties. Your application
will connect as specified in the Spin SQL component that calls the connect () method.

Building SQL Statements

Each of Spin’s database components except SqlConnection builds a specific kind of SQL statement,
which executes when a Spin behavior invoke its execut €() method.

3-3

Spin User’s Guide

SqlConnection allows you to define a dedicated connection for circumstances in which connection-
pooling is inappropriate. Table 3-1 lists the Spin database components. For more information, see
“Using a Dedicated Connection” on page 27.

Table 3-1: Spin Database Components

Component Icon SQL Equivalent Purpose

SqlDelete £ DELETE Deletes a row.

Sqllnsert 4 INSERT Inserts a row.

SqlSelect B SELECT Searches the database.

SqlUpdate i UPDATE Changes the data in existing row(s).

SqlRawStatement 5 Any of INSERT, DELETE, UPDATE,
SELECT or CALL Build state s with complex, unimplemented syntax.

SqlProcedureCall @ CALL Callgprocedur@stored in the database.

SqlConnection 5 Passes usef name and password as p Enca. ulates a connection to override default connection
of connecting. ling?

ces the SPrnSQL. j ar file in the beans directory in the Spin directory.

When you install S
These beans implem bpin database components, as well as supporting classes and resources,

. S
especially component !Hﬂ

Spin’s SQL components are intended to be lightweight and simple. Therefore, the delete, insert, select,

s allowing you to set and change bean properties.

and update components do not allow for all legal SQL syntax. To compensate, Spin provides two
general-purpose components:

O The SqlRawStatement component allows you to directly enter any SQL statement that uses one of
the operators INSERT, DELETE, UPDATE, SELECT or CALL.

O The SglProcedureCall component allows you to call any procedure stored in the database, thus
permitting any arbitrary computation.

Note: If you wish to use SqlProcedureCall, make sute your driver suppotts execution of stored
procedure calls.

You build SQL statements by adding these database components to your application, editing each as
necessary. Building a simple SQL statement includes some or all of the following steps:

Specify a connection.

Specify a table.

Specify columns if appropriate.
Specify conditions if necessary.

Check the syntax of the statement you’re building,

o ua b~ WON =

Change component options, if appropriate.

Chapter 3: Accessing a Database

The SELECT statements differ somewhat, and you might also specify joins, a sorting order for
results, and column formats. SqlRawStatement and SqlProcedureCall differ considerably.

To add an SQL component to your application:

1 Open the capsule outline editor on your application, if you are not already using it.
2 Insert > com.webgain.spin.sql > SglComponent.

To open an editor on an SQL component:

1 Open the capsule outline editor on your application, if you are not already using it.

2 Double-click the icon of the SQL component you wish to edit.

(You can also right-click to bring up a menu of more specific editing options for that component.)

Checking Options

Each component that builds an SQL statement s m four to six options, described below. In
order to be useful under the widest posslble set Qﬂnst ces, default values vary by component

and are discussed with the specific comp

1 Double-click the icon of th t you wish to edit.
2 Click the Options tab. Th s edlitor appears.
P o

. Edit: SelectCustomer

rTabIes rCqumns Joinz | Conditions | Sorts | Syntax rFormats ertions|

E AutoClose

E AutoMextOnExecute
E CloseOnException
D lgnoreUnsetP arameters

[¥] RetrieveLimit Limit [1000]

[Z] TreatEmptyStr UnzetP

Ok I Apply | Cancel |

Aut oCl ose The application need not explicitly close the connection after an SQL component
executes; Spin closes the connection transparently.

Aut oNext OnExecut e
The component automatically calls next () after execut e(), repeatedly, until
there’s no more data or the retrieve limit is reached. Every row fetched generates an
event before the component automatically calls next () again.

Cl oseOnExcepti on

If the statement encounters an exception, it closes the database connection and then

3-5

Spin User’s Guide

rethrows the exception. If this is not checked and an exception occurs, you must
trap the exception and close the connection yourself.

| gnor eUnset Par aneters
Rebuilds the SQL statement, omitting parameters with NULL values, useful if you
want your application to allow incomplete input.

RetrieveLimt
Specifies whether you want SELECT statements to pause after they’ve retrieved the
specified number of data items, or to continue until they’ve retrieved every item that
meets the specified criteria.

Treat Enpt ySt ri ngsAsUnset Par anet er s
Transforms empty strings " " to NULL values, useful for validating input that
comes, for example, from HTML forms.

Checking Syntax

As you edit an SQL component, you're building L stf}ement. You can check your progress at
any time.

To view the statement you are byl

1 Double-click the icon of t

2 Click the Synta@ur c

component you wish to edit.

ponent appears something like:

+ Edit: InsertCustomer

Dptionsl

INSERT INTO PUELIC.CUSTOMER_TEL
{ CUSTOMER_HNUM,

DISCOUNT _CODE,
ZIP,
NAME ,
ADDR_LHL,
ADDR_LHNZ,
CITY,
STATE |

VALUES [:CUSTOMEE HNUM,
:DISCOUNT _CODE,
1ZIP,
NAME
:ADDF_LN1,
:ADDR_LNZ,
1 CITY,
: STATE |

Table I Columns Syntax

Ok | Apply | Cancel |

Items with colons (:) in front are named parameters to be replaced with actual values when Spin sets
them.

The section below walks you through building a simple SQL statement with Sqllnsert, SqlDelete, or
SqlUpdate. Next, SqlSelect statements are described, followed by SqlRawStatement and
SqlProcedureCall.

SqlConnection is discussed in “Using a Dedicated Connection” on page 27.

3-6

Chapter 3: Accessing a Database

Building Simple Statements

The SqlDelete, Sqllnsert, and SqlUpdate are the simplest components; after you build them, invoke
their execut e() method and you’re done.

Note: If you have unchecked the options Aut 0oCl ose or Cl oseOnExcept i on (checked by default),
you’ll also have to invoke the component’s Cl 0Se() method, in the first case after normal operation,
and in the second after catching an exception.

Double-click on the icon for Sqllnsert and you’ll see an editor like the one below:

% Edit: InsertCustomer

Columnsl Syntaxl Dptionsl

Connection Table

Chmse | Choose |

Ok I Apply Cancel

Specify a Connection

First, you must specify the data source your application will use. The editor opens on the tab you’ll
need to do so, marked Tables.

a Click Choose under the Connection field. A dialog appears, containing a list of the defined
connections. (These are actually pools of connections, defined in the
spi nsql . properti es file described on page 26.)

Ok I Cancel I

b Highlight the desired connection and click OK.

The connection you selected appears in the Connection field.

3-7

Spin User’s Guide

3-8

Specify a Table

Next, you must specify the table that holds the data this statement must access. In the Tables tab:

a Click Choose under the Table field. A dialog appears, containing a list of the tables defined in
the specified database.

b Highlight the desired table and click OK.

The table you selected now appears in the Table field, and your editor now looks something like:

r’ Edit: InsertCustomer

Table | Columnsl Syntaxl Dptionsl

Connection Table
[FUBLIC CUSTOMER_TBL

Choose | Choose |

Ok | Apply Cancel

N
Specify Columns

INSERT and UPDATE statements need columns to which to write their data; SELECT statements
need columns to retrieve. To specify the column(s):

Click on the Columns tab.

Select a column in the Available Columns list, and click the rightward-pointing arrow QI to
move it into the list of columns affected by the SQL statement.

Repeat until you have moved all the columns that you require. If you move one by mistake,
click the leftward-pointing arrow to move it back. |

For Sqllnsert and SqlUpdate to perform any useful work, you must provide column values. You
can set the value of a column to any of three kinds of things:

O the value of another column (for SqlUpdate only),
O any arbitrary value, such as a string, as expressed in SQL, or
O a parameter passed by a Spin behavior.

By default, a Spin application uses this last mechanism to set a column value. Again by default,
each column is assigned a parameter name equal to the column name. Your running application
can then set the column’s value when a Spin behavior executes a method named

set Par amet er XX(), substituting your actual parameter name for Par amet er XX (This is
discussed in greater detail in “Passing Parameters” on page 23.)

Chapter 3: Accessing a Database

4 If you wish to use another mechanism to set column values, select the appropriate column
and click Edit to invoke the following dialog:

r’ Edit Ingert Column

IParameter 'I
Column
[oimy =

Ok | Cancel | %

Note: Use the default mechanism to set the column value if your SqlUpdate component will include a
condition that refers to this parameter.

5 If you wish to change the parameter name, select it and type the desired name.

Otherwise, access the pulldown menu to change Parameter to SQL Syntax or (if you’re editing

an SqlUpdate component) Column.
a If you've chosen SQL Syntax, enter the SQL the edit field.

t
If you’ve chosen Column, select the colgfnn game {om the drop-down menu.
b Click OK when you’re done.
Specify Conditions i
SqlDelete, SqlUpdas d
in SQL terms—that W g

Note: If you build a condition that refers to named parameters, set the value of those parameters
using the default mechanism of calling set Par anmet er XX() methods; set the corresponding column
values using parameters whose names are identical to the column names.

qlSel8t can build statements that include conditions—WHERE clauses,
use to control the scope of delete, update, or select operations.

3-9

Spin User’s Guide

To specify a condition:
1 Click on the Conditions tab. The following appears:

% Edit: DeleteCustomer

: :
k—

2 C(lick the add button to invoke the cond#i®n editor and add a condition:

1N

% Edit Condition

Parameter 7]

A conditional expression consists of a left-hand operand, an SQL operator, and a right-hand
operand. The left-hand operand is always a column. The right-hand operand can be ecither a
named parameter, another column, or arbitrary SQL text. The following operators are

supported:

= equals

<> does not equal

< less than

<= less than or equal to

> greater than

>= greater than or equal to
LI KE matches string

NOT LI KE does not match

I'N is in a set of values
NOT I N is not in a set of values
I'S NULL column contains no value

'S NOT NULL column contains a value
3 In the leftmost field, select a column from the pulldown menu.
4 In the middle field, specify an operator.

5 If you wish to use a parameter, type the desired parameter name in the rightmost field.

3-10

Chapter 3: Accessing a Database

Otherwise, access the pulldown menu above that field to change Parameter to SQL Syntax or
Column.

a If you've chosen SQL Syntax, enter the SQL text in the edit field.
If you’ve chosen Column, select the column name from the drop-down menu.
b Click OK when you’re done.

6 Click the add button again if you wish to add another expression to the WHERE clause
you’re creating;

Repeat SthS as necessary.

If you have added more than one conditional expression, select the topmost. By default, it is
joined with the next by the word AND. Click And/Or to toggle this to an OR if you wish.

9 Repeat the previous step until all the conditional expressions are strung together with either
AND or OR, as required.

Table 3-2: Sqllnsert, SqlDelete, and SqlUpdate Options

Option Default
AutoClose false
CloseOnException true

IgnoreUnsetParameters false

TreatEmptyStrings AsUnsetParam

SqlSelect N

SqlSelect components return data to the Spin capsule one row at a time, for each row generating a
rowRet ri eved event. Add behaviors that are activated by r owRet r i eved when your
application needs to act on this data.

After all behaviors triggered by the r owRet ri eved event have executed, if AutoNextOnExecute is
enabled, the SglSelect component processes the next row of data and generates a new

rowRet ri eved event. After it retrieves the last row, the component generates a NOMdr eRows
event.

If the RetrieveLimit option is set, then when the limit is reached, SqlSelect generates a
retrieveLi m t Reached event.

SqlSelect allows you to specify more than one table to use for joins, the joins themselves, a sorting
order for the results, and the format of columns.

Choose Tables

To specify the tables, follow the same procedure described in “Specify a Table” on page 8, clicking the
add button €8] to add an additional table, or the delete button =] to remove one.

Spin User’s Guide

Specify Joins
To specify a join:
1 Click on the Joins tab. The following appears:

. Edit: SelectCustomer

Column Column
|CUSTDMER_TEIL.CUSTDMER_NUM | = |DRDER_TBL.CUSTDMER_NUM

3 Use the pulldown menus to select the two columns to join. When you’ve made the join you
require, click OK.

4 Repeat the previous two steps until you’ve made all the required joins.
If an existing join is unsatisfactory, select it and click Edit to change it.

Click the delete button |=] to remove one.

3-12

Chapter 3: Accessing a Database

Specify Sorting

To specify a sorting order in which to return results:

1

¥ Edit: SqlSelect?

Tables] Cnlumns] ..Iu:-ins] Canditions

Click on the Sorts tab. The following appears:

l S\,rnt.ax] Fnrmaiﬁ] Elpti-:-ns]

&= e |09

5

ak | Apply | Cancel |

Click the add button il to invoke the sort editor and add a sort:

% Edit Sort

Column Order

CUSTOMER_NUM -] & asc ¢ DpEsc

Ok | Cancel |

Use the pulldown menu to choose the column you wish to sort.

Click ASC for an ascending order or DESC for a descending order. Data is sorted according
to the specific database implementation. Click OK when you’re done.

To change an existing sort, click Edit.

Format Columns

The format of a column consists of two things:

g
g

the Java type that the component returns, and

the form of a string, if any results are converted to a string,

3-13

Spin User’s Guide

The JDBC driver understands each datum in the database as a specific JDBC type. Spin’s SQL
components automatically convert the JDBC type to a Java type. You can change this to a different
type, if your application requires it.

If a column result is converted to a string, either when it is retrieved, or later by calling a method such
as get Col umSt ri ng() (available in SqlSelect, SqlRawStatement, and SqlProcedureCall), you can
also specify the format of the resulting string;

To do either of these things:

1 Click the Formats tab. The following appears, showing all the columns that return results:

t: SelectCustomer

Tables rCqumns Joinz | Conditions | Sorts | Syntax rFormats ertions|

Mame | JDBC Type | Java Type | Format |
CUSTOMER_TBL.CUSTOMER_NUM | INTEGER java.lang.Integer #
CUSTOMER_TEL.NAME WARCHAR java.lang.String
ORDER_TEL.ORDER_NUM INTEGER java.lang.Integer #
ORDER_TBL.REF_MLUNM INTEGER java.lang.Integer #
ORDER_TBL.SALES_DATE DATE java.sql.Date b - dd

Ok I Apply | Cancel |

Edit Column Format

Column IDRDER_TEIL.SALES_DATE

JDBC Type [DATE

Jawva Type Ija\ra.sqI.Date ;I

Format fyyy-Mh-dd

Pradefined Formats Mbd-dd

Midhny

Use hidfyy

MM/ iy

Mty]
MMM d, vy

MMM d, vy

dd-MM-ynvy

d- MMMy

Ay =

Ok | Cancel |

3 Use the pulldown menu to change the Java type, if appropriate.

|»

Note: The default Java type is approptiate under most circumstances.

Select a predefined string format from the bottom list and click Use, or enter your desired
format directly in the format field using standard Java notation.

Chapter 3: Accessing a Database

Table 3-3: SqlSelect Options

Option Default
AutoClose true
AutoNextOnExecute true
AutoCloseOnException true
IgnoreUnsetParameters false
RetrieveLimit false

TreatEmptyStringsAsUnsetParameters false

SqglRawStatement and SqlProcedureCall

As mentioned earlier, Sqllnsert, SqlDelete, SqlUpdate, and SqlSelect focus on efficiency and ease of
use, and therefore do not implement all possible SQL syntax. When you need functionality they do
not provide, use SqlRawStatement to enter any arbit L statement, or SqlProcedureCall to call
any arbitrary stored procedure call.

To enter any SQL statement you can typ
1 Double-click the SqlRawSgefe editor appears, open to the Statement tab:

% Edit: SelectPortlandCount

Dptionsl

Connection Werb

Fample Choose I ISELECT 'I
Syntax

SELECT COUNT(*) FROM PUELIC.CUSTOMEE TEL
WHERE CITY = 'Portland'

Ok I Apply | Cancel

2 See “Specify a Connection” on page 7.

Choose the required verb from the pulldown menu, one of INSERT, DELETE, UPDATE,
SELECT or CALL. The verb appears in the edit field below.

4 In the edit field, type the rest of your statement.

Spin User’s Guide

Table 3-4: SqlRawStatement Options

Option Default
AutoClose false
CloseOnException true
IgnoreUnsetParameters false

TreatEmptyStringsAsUnsetParameters false

To integrate a stored SQL procedure into a Spin application, Spin needs to know these things about
the procedure:

0 its name,
return type,

0
O a full description of the parameters, and
0

the format of the result columns. / «

Note: Consult the appropriate documenw t‘sure that the your JDBC driver supports the

execution of stored procedure calls.

o

Chapter 3: Accessing a Database

% Edit: SqlProcedureCalll5

Connection Procedure

To call a stored SQL procedure:
1 Double-click the SqlProcedureCall icon. The editor appears, open to the Procedure tab:

l Return "u"alue] F'arameters] Result Cnlumns] S\,rnt.ax] Elpti-:-ns]

Choose Choose

Ok | Apply Cancel

2 Specify the connection. See “Specify a Connection” on page 7.

Choose the stored procedure in the same manner.

4 Click the Return Value tab. Enter the SQL type returned from the SQL procedure, and the
JDBC type to which to convert it.

5 Click the Parameters tab. You’ll see a list of each parameter that passes a value to the stored
procedure (i N), each parameter that passes a value back from the database (OUt), and each
parameter that does both (i nout).

Resize the columns or change their order by placing your mouse cursor over the column labels,
or the boundaries between them, and dragging;

Click the Result Columns tab. Specify the format of the result columns.

7 Check syntax and change options settings as required.

Table 3-5: SqlProcedureCall Options

Option Default
AutoClose true
AutoNextOnExecute true
CloseOnException true
Retrievelimit false

Spin

User’s Guide

Building SQL Statements - Additional Tools

All the SQL statements you have built so far involve use of the graphical customizer that appears
when you double-click on an SQL component. For users who would like to build SQL statements
using generic properties, the standard Spin property editors may be used. To access these editors,
right-click on an SQL component and select an option from the resulting menu.

All the properties of the SQL components are directly accessible using string properties. The primary
benefit of this capability is to allow Spin users to create Spin applications that dynamically configure
components during runtime.

Executing SQL Statements

This section discusses:

3-18

O

O
O
O

causing execution,

retrieving results, «
passing parameters, and
using a dedicated connec?

Chapter 3: Accessing a Database

First, we’ll give a general rule for accomplishing these things, then we’ll run through an example to
show it in the context of an application. The example is very simple: it opens an HTML page in your
browser and displays a list of customer names and cities, as shown below:

“J A Title - Microzoft Internet Explorer
File Edit “iew Favorites Tool: Help -

5 ¥
& [A QA Gi @ B
Back Stop Refresh Home Search Favortes Higtory il
Address | http: Alocalhost 80/ serviet sqlexample j @Go Links *
=
SuperCom Miami

Livingston Enterprises Miami

Oak Computers Dallas
MicroApple Alanta

HostProCom San Mateo

Central Comp San Jose

Golden Valley Computers San Jose
HPSystems San Mateo

West Valley Inc. Dearbom

Ford Motor Co Dearborn

Small Car Parts Detroit

NY Media Productions New York

NY Computer Repair New York

&] Done _!i,l Local intranet

To keep these examples short and to the point, it is helpful to set up the basic application now. To do

SO:

N O o bW

Start Spin, if necessary.

Edit > Preferences to allow yourself to open a browser on your application.
a Click the DebugServer tab.

b Check true for WebServerEnabled.

Cc Check the other settings.

File > New Capsule
Capsule > Edit Properties

In the Type tab, set it to Java Servlet.

Insert > com.webgain.spin.sql > SqlSelect

Name it SelectStatement.

3-19

Spin User’s Guide

3-20

1

12
13
14

15

16

Configure the SqlSelect component you just added:

a In the Tables tab, set Connection to sample.

b Set Selected Tables to PUBLIC.CUSTOMER_TBL.
¢ C(lick the Columns tab.
d

Move all the columns into the Selected Columns list. (Repeatedly click the right-pointing
arrow.)

e Click the Options tab.
f To keep things simple, check IgnoreUnsetParameters. Set a rettieve limit if you like.
g Check syntax and formats if you wish.

Select the capsule to assure that it will become the parent of the item you add next.
Insert > com.webgain.spin.html > HTMLDocument
Spin includes components that implement HTML entities. You’ve just added an HTML

document to your application.

If necessary, select the document you just added go®sSyre that it will become the parent of the
next item.

Insert > User Behavior > ServletGet
The user behavior adds two new acti amihe them.
Still with the document s s pafient:

Insert > com.webgaimgspin.Rim!| > TMLDoMultiple

You’ve just add ML component that can contain a number of other entities. It will hold
the paragraphs with g€ customer list, as well as blank paragraphs for white space.

With the HTMLDoMultiple selected as patent:
Insert > com.webgain.spin.html > HTMLParagraph

With the HTMLParagraph selected as parent:
Insert > com.webgain.spin.html > HTMLText

Chapter 3: Accessing a Database

Your capsule now appears as below (the numbers appended to your entities may differ):

¥ sqlexample.zac Capsule Dutline =] B3

File Edit Inzert “iew Outline Actor

2 ¥ Capsule =
o [BF SelectStaternent
2 HTMLDocument3
7 &l ServietGet
o =l setContent
o =l zendDocument
7 (@ HTMLDoMultiple?
2 HTMLParagraph1 2
o @ HTMLText10

SqlSelect
Y\]

To execute a statement, create a Spin Behavior that invokes its component’s execut e() method.

For SqlDelete, Sqllnsert, and SqlUpdate components with default options, nothing more needs to be
done.

Causing Execution

O If you've unchecked Aut 0Cl 0se, you must invoke the component’s |l 0se() method. If
you’ve unchecked Cl oseOnExcept i on, you must handle exceptions explicitly.

O If you've unchecked Aut oNext OnExecut e, you must invoke the component’s next ()
method.

Return to the example you started above to add a simple invocation of execut e() :

1 With HTMLDoMultiple selected as parent:
Insert > Behavior > Action

2 Rename it onOutputSelectExecute.
Edit it.
a Set stimulus:

Acti vat eOn act or. WhenCQut put . whenCQut put
b Set response:

Send To: Sel ect St at enent
Message: execute

3-21

Spin User’s Guide

Retrieving Results

3-22

SqlSelect components generate a F OWRet 1 i eved event; to retrieve values from an SqlSelect
component, create a Spin Behavior activated by r owRet r i eved. That behaviot, or others triggered
with it, can retrieve data from the row one column at a time, using get Col utmXX() methods.

Or you can retrieve an entire row at once using get Col utmVal uesAsHasht abl e() and use
that to fill in equivalently named values in a form, using the HTML components.

SqlSelect components also generate a NOMDI €ROWS event; for special processing after the last row is
rettieved, make a behavior activated by NoMdr e Rows. For the SqlSelect component in the example,

we don’t need to: its Aut 0Cl 0se option is enabled, and there’s nothing else we need to do.

Return to the example to add a simple retrieve operation:

1

With HTMLDoMultiple selected as parent:

Insert > Behavior > Action
Rename it onRowRetrievedPrint. «
Edit it.
a Set stimulus:

ActivateOn Sel ect nt FowRetrieved
b Set response:

Send To: a
Message: pr

The actor, in this Gas€ is the parent: HTMLDoMultiple. Its child is the paragraph.

To set the content—the text that prints:

1

With HTMLText selected as parent:
Insert > Behavior > Action

Rename it setTextWhenOutput

Edit it.

a Set stimulus:

Activat eOn act or. WhenCut put . whenCut put
b Set response:

Send To: actor

Message: set Text

Dat a: (String)

Wt h=Sel ect St at ement . get Col utmStri ng(“NAME") + “ “ +
Sel ect St at ement . get Col uimSt ri ng(“Cl TY”)

To create the final field:
a Click the Wt h: field to make it become a Wt h= field.

b Add the first part from the pulldown menu:
Sel ect St at ement . get Col utmSt ri ng(“ NAME")

Select the text you added and copy it (Control-C or Command-C).

d Deselect the text, place the cutsor at the end, and type:

+o0on 4

Chapter 3: Accessing a Database

Include spaces before the first + and after the last.
e Paste the text you selected earlier.
f Change NAMEto CI TY.
Once again, the actor is the parent: HTMLText.

You can now open a browser on | 0cal host , as instructed in “Set Up for Testing” on page 8, and
click on your example servlet to see the results, as illustrated on page 19.

Passing

Parameters

Sqllnsert or SqlUpdate components can set column values in several ways, but one of the most useful
is to do so with a Spin parameter. SqlDelete, SqlUpdate, or SqlSelect can specify a condition, for
which a Spin parameter can serve as the right-hand operand.

Before executing the SQL statement, set the parameter by javoking a method such as
set ParaneterString("Cl TY", "Portl an<

0s
same names as the colum, eS bfe (the default).

2 by invo thig method set Mat chi ngPar amet er Val ues() (part
ogragnmedStatement). It takes a hash table as an argument—a whole

You can set all parameters at once: Q
1 Name the Spin parameters (for exa% e%oming from an HTML form) exactly the
a

To aid in validating input, enable the option Tr eat Enpt y St ri ngsAsUnset Par anet er s on your
component. This option transforms empty strings " " to NULL values. Your SQL statement can
then throw an exception if certain parameters are not supplied.

Return to the example to pass a parameter:
Double-click the SqlSelect icon to invoke its editor.
Click the tab labeled Conditions.

Click the plus sign to add a condition.

Under Column, choose CITY.

Under Operator, choose = (it’s the default).

o G A WN =

Make sure the rightmost pulldown menu is set to Parameter. In the field beneath it, type
city.

~

Click OK twice to dismiss the condition editor and the component editor.

8 With HTMLDoMultiple selected as parent:
Insert > Behavior > Action

9 Rename it setCity.

10 Still with the setCity behavior selected:
Outline > Move > Up (Control-U or Command-U)
Outline > Move > Up

Do this twice so that the parameter is set before executing the SglSelect statement.

3-23

Spin User’s Guide

3-24

11

12
13

14

Now edit the setCity behavior:

a Set stimulus:
Acti vat eOn act or. WhenCQut put . whenCQut put
b Set response:

Send To: Sel ect St at ement

Message: setParaneterString("ClTY", ?)
Data: (String, String)

Wth:TY

Wt h=capsul e. get Parameter("city")
To make the last line:

a Click Wt h: to changeitto Wt h=

b Choose capsul e. get Paranet er (Stri ng)

¢ Sclect St ri ng and replace it by typing " Ci ty".
Save your work.

We could now build a form to allow users to enter

name, but you learned how to do

that in “Building a Simple Servlet” on page 5. lmsteadflet’s take the shortcut—go back to
your browser and add the parameter manually byappertling to the URL:
?ci t y=Dear born Q
Your URL now reads:
http://1ocal host/ / s@l exanpl e?ci t y=San Mat eo
Press Return t f yolig request. The browser returns with:

A Title - Microsoft Internet Explorer

File Edit “iew Favortes Toolr Help -
by >
@ 5 Q| @ G 3
Back Stop Refresh Home Search Favortez Histonp
Address | http: /flocalhost B0 servlet sqlexample Yeity=5 an % 20M ateo j @ Go Links ®
=
HostProCom San Mateo

HPSystems San Mateo

&) Dore

E.f Local intranet

Chapter 3: Accessing a Database

Connecting to a Database

Web server applications typically run in demanding concurrent multiuser environments. To make
efficient and tunable use of system resources, the Spin database components use a connection
pool: a group of connections that remain open for any transactions that need them, so that a
transaction can use them without the overhead of opening and closing them explicitly. When your
application runs, connections from the specified pool are created on demand according to the
properties defined for them. If several database components need to connect to the same data source,
they share these preconfigured connections.

For efficiency and convenience, your Spin application can connect using these pools, or, when
circumstances dictate, it can use a customized SQL connection for explicit control over all properties
of a dedicated connection. This section discusses using default connection-pooling. “Using a
Dedicated Connection” on page 27 describes how to make and use a customized connection.

Defining Connection Pools

You’ll need a connection pool for each dagabase tdfwhich your application connects, and for each
username and password combination tha plication will use to identify itself. You define

i NSl per ti es. This is whete the connections shown
en you first start Spin, the Connection Browser shows
ed in the default Spi ngl . properti es file. After you've
defined your own co pools in that file, you can access them also with the Connection

connection pools in a file na

by the Connection Browser ar
only those connectig Slg de

Browser.

To define a connection pool:

1 With a text editor, open the file spi nsql . properti es, located in the Spin installation
directory.

2 Specify the following properties for Spin to use when it cteates connections for the pool.
(You can override them in various ways when appropriate.)

drivers A JDBC driver is necessary to connect to a data source. Specify all JDBC drivers
used by any connection pool with their fully qualified classnames. Separate drivers
with a semicolon, thus:;

Note: Spin ships with the JDBC-ODBC bridge driver and the default PointBase driver, both of which
are specified in the default Spi nsql . properti es file, listed in “spinsql.properties” on page 26.

logfile The name of the file available for Spin to write its connection log entries:
initialization status messages and connection etrrors.

def aul t Connect i onNane
The name of the connection pool to use when no pool is specified. This connection
is used the first time Spin invokes the Connection Browser.

3 For each connection pool, specify its properties. Properties take the form:

pool nane. property=val ue.

3-25

Spin User’s Guide

pool name. url The URL used to designate the database to the JDBC driver. For the exact syntax
required, consult the JDBC driver documentation.

p00| name. nexconn
This property determines the number of active connections in the pool. If this
property is omitted or set equal to —1, the number of connections is unlimited.

pool name. user The username used to connect to the database.

pool name. passwor d
The password used to connect to the database.

Note: If username and password ate to be supplied at runtime, you can omit these propetties.
However, it’s necessary to set these during development in order to use the database component
editors.

pool nare. transacti onl sol ati on
The level of concurrency control to u r any operation performed through the
pool. As defined in the JDBC A osSible values are:
READ_COMMITTED
Dirty readspnonrepatable reads and phantom reads can occur.

reads ented.
le reads and phantom reads can occur.
BNE_READ
Dirty reads and nontepeatable reads are prevented.
Phantom reads can occur.
SERIALIZABLE
Dirty reads, nonrepeatable reads and phantom reads are prevented.

The default transaction isolation is READ_COMMITTED. You can override
transaction isolation at runtime by calling the set Tr ansacti onl sol ati on
method. For a complete description of transaction isolation levels, consult the JDBC
API documentation.

spinsql.properties

All Spin servlets running on the same Web server must share one Spi nsql . properti es file. By
default, spi nsql . properties defines several connection pools for use with the like-named
example servlet. Here is the file as shipped:

point to drivers, logfile, default connection pool
dri vers=sun. j dbc. odbc. JdbcCQdbcDri ver
com poi nt base. j dbc. j dbcUni versal Dri ver
| ogfil e=zatsql .l og
def aul t Connect i onName=sanpl e

for PointBase sanpl e dat abase
sanpl e. url =j dbc: poi nt base: //127. 0. 0. 1/ sanpl e
sanpl e. maxconn=2
sanpl e. user =PUBLI C
sanpl e. passwor d=publ i c

3-26

Chapter 3: Accessing a Database

for bug dat abase exanple
buguser . url =j dbc: poi nt base: //127. 0. 0. 1/ zat exanpl e
buguser . maxconn=2
buguser . user =buguser
buguser . passwor d=buggy
buguser.transacti onl sol ati on=READ_COWM TTED

for polling exanple (webuser and polladm n)
webuser. url =j dbc: poi nt base: //127. 0. 0. 1/ zat exanpl e
webuser . naxconn=10
webuser . user =webuser
webuser . passwor d=spi nup
webuser . transacti onl sol ati on=READ_COWM TTED

pol | adm n. ur| =j dbc: poi nt base: //127. 0. 0. 1/ zat exanpl e
pol | adm n. maxconn=2

pol | admi n. user =pol | adni n

pol | adm n. passwor d=super 1

pol | admi n. transacti onl sol ati on=READ_COWM TTED

for netcard exanple
net card. url =j dbc: poi nt base: //127. 0. 0. 1/ zat exanpl e
net car d. maxconn=2
net card. user =net card
net car d. passwor d=net card
net card. transactionl sol ati on= o ED

N

Using Connection Pools *

To use Spin’s default cganectiogooliyg, set the SQL statement property cOnnect i onNarre to the
desired pool, as na

i ns§l . properties. When the component is called upon to execute
that statement, it tran§pareg

available in “Building Statements” on page 3.

Using a Dedicated Connection

On occasion, it may be necessary to connect to the database using an explicitly defined, dedicated
connection—for example, if the order of certain transactions matters, or if a certain operation is
privileged and must be kept confidential.

To define the required connection explicitly with Spin’s SqlConnection component:

3-27

Spin User’s Guide

1 Before it is needed, insert an SqlConnection component.
Insert > com.webgain.spin.sql > SqlConnection

2 Double-click on its icon to invoke the editor:

c"'"- Edit: SerializableConnection

Connection Name

sample Choose

User

serupdater

D AutoCommit

Transaction Isolation

SERIALIZABLE -

>

3 Specify the connection. See “Specify a Con on” offpage 7.

4 Specify the user name and password that the ication will use to connect to the database.
5 If you wish the application to commi b saction after every statement executes, check the
Aut oConmi t option. I ave igffichecked, your application must send the conmi t

method to the dedicated mfectidn when you wish to commit the transaction.

6 Specify the lev&
described in “D

urrefcy control you wish. Transaction isolation levels are briefly
onnection Pools” on page 25. For a complete description, consult

7 Before executing the SQL statement that must use the dedicated connection, create a Spin
behavior to point the corresponding SQL component to the SqlConnection you’ve just
configured:

activateOn: parent.Behavior. activated

sendTo: your SQL statement

nmessage: set Sgl Connecti on (inherited from SqlAbstractStatement)
wi t h: your SglConnection

8 Also before executing the sensitive SQL statement, create Spin behaviors that invoke the
following methods on the SglConnection:

0O connect () to connect to the database,

O commit() orrol | back() (if Aut oCommi t is not set) to commit successful changes
or back out unsuccessful ones, and

O di sconnect () to disconnect from the database when finished.

For More Information

1 Select any of Spin’s database components (or indeed, any Spin component).
2 View > Get Object Info.

3-28

Chapter 3: Accessing a Database

A browser opens on the JavaDoc documentation for the selected component, including its superclass,
a brief description, and a description of every publicly accessible method it implements.

To play with examples, open the files in:

../ Spi n/ exanpl eservl ets/

Especially useful are the sanpl e, net car d, and bugdb examples, and t abl eExanpl e. zac.

Q’\
>
O?\

3-29

Spin User’s Guide

3-30

Using the Spin JSP Tag Library

JSP (Java Server Pages) tags provide a standardized means of incorporating dynamic elements into
static HTML pages. JSP tag allows you to separate the model of the data (specified in the capsule)
from the viewing of the data (specified in the HTML/JSP file). Spin’s JSP tags let you cteate clean
connections between capsules and HTML. For more ongghat you can accomplish with other, non-

Spin JSP tags, consult a JSP book. ?

Most of the JSP tags implementgdnin Spi o user interface functions. These user interface JSP
tags are described in detail in er Inferface Tags” on page 4. Spin also provides a type of JSP
a

tag called a control @on 1 tags are described in “JSP Control Tags” on page 1.

JSP Control Tags

Spin uses three JSP control tags, call, conditional, and repeat. JSP control tags control the HTML
output sent from the servlet to the browser. To use the call, conditional, and repeat tags, you must
first understand capsule methods. Methods are implemented in Spin by Action objects.

When a method is sent from a JSP tag, the capsule sees the method as an incoming event and relays it
to any object listening for that event. A method invocation never directly returns a value; it’s
impossible. So any desired result must be accomplished using side effects. For example, the method
might set a data item to a particular value, which in turn is used to set the value attribute of a tag.
Sometimes methods “return” their value by sending the message

set Test Resul t

with a Boolean value. The result can then be queried during rendering;

4-1

Spin User’s Guide

Table 4-1 lists the JSP control flow tags implemented in Spin. All tag attributes for these tags may be
specified at runtime.

Table 4-1: JSP control flow tags implemented in Spin

Tag name Implemented by Spin class Functionality

call CallTag Allows arbitrary HTML to be
inserted into the document

conditional ConditionalTag Conditionally includes the body of
the tag

repeat RepeatTag Repeats the body of the tag each

time the tag’s method evaluates to
true

call tag

The simplest control flow tag is the call tag Its a&mt@s are listed in Table 4-2.

Table 4-2: call tag attribut

P

Attribute Required | What it does

method yes The method name

To see an example of a call tag in use, open the following NetCard project:

spi n/ exanpl eser vl et s/ Net Card/ net card. zap

Next, open the project’s pickup.zac capsule. Double-click on the enclosed JSPTemplate icon and note
the associated HTML file name. Open that HTML file with a text editor. Look for occurrences of
spi n: cal | . There should be four calls: one each for methods named i Mage, t 0o_nane,

f r om_name, and message. For each call tag encountered, an event is generated to the capsule and
handled through any listeners.

In the pickup capsule, find the print on image action heading (under the cardimage heading). Double-
click on the icon. Note that the action activates when the capsule.Capsule.image event is received and
that the resulting action prints the image to the HTML file being generated. Look at other headings
related to the call tags: print on fromName, print on toName, and print on message for similar usages.
Close the capsules, project, and text editor windows.

Chapter 4: Using the Spin JSP Tag Library

conditional tag
Table 4-3 lists the attributes of the conditional tag:

Table 4-3: conditional tag attributes

attribute required what it does

method yes The method name

To see an example of how the conditional tag is used, open the following capsule:

spi n/ exanpl eser vl et s/ IJSPCFor niTagTest i ng/ JSPFor nTagTest i ng. zap

This opens the JspFormTagTesting project. In the project editor view, double-click on the
JSPConditionalTest.zac icon to display the capsule outline gditor. In the capsule outline, double-click
on the JSPTemplate icon and note the name of the co onding JSP file.

Open the JSP file with a text editor. The file cont@iggsthree conditional tags:

<spi n: condi ti onal method="ve
spi n: condi ti onal >

<spi n: condi ti onal
spi n: condi ti onal >

<spi n: condi t i@
spin:conditi@

">TRis text ought to show up. </

Each tag invokes a difféfent method. If the method evaluates to true, Spin processes the body of the

tag; if the method returns false (or is not found) Spin does not process the tag body. Run the capsule
to see the results.

Note that methods in Spin cannot directly return a value. Go to the capsule and double-click the
verity heading. Rather than directly returning a value, the processing of the verity event causes the
message Set Test Resul t to be sent to the actor (the JSP template). The ConditionalTag bean
instance then fetches the test result to determine whether to evaluate the body of the tag. Close the
capsule and any open editors.

4.3

Spin User’s Guide

repeat tag

Table 4-4 lists the attributes of the repeat tag:

Table 4-4: repeat tag attributes

attribute required what it does
method yes The method name
limit no Specifies a maximum number of times

the body of the repeat tag will be
executed. If you do not specify a time, a
default of 1000 iterations is enforced.
Specify a limit or use —1 to prevent this
default from being applied.

To see an example of how the repeat tag is used, o

number of times thesfCpeafjag bRy is executed can be controlled by the limit attribute.
abie

HTML creates five t the corresponding HTML file (specified in the JSPTemplate heading).
The rows of the tables are filled in with the spin:repeat tags. To determine whether to print the row,
the yayOrNay method is invoked. For the first column of the table, the inductionVariable method is
invoked. For the second column, the squared method is invoked, and the third column is populated
using the cubed method. In these examples, the number of times the repeat body is executed is
controlled using the limit attribute. The example could have been written so that the yayOrNay
method had a more complex expression to control the evaluation of the tag body. Close the capsule,
and any text editors.

JSP User Interface Tags

4-4

Most UI tags have some attributes that are useful only with Javascript. These attributes are:

O onBlur

O onChange
onClick
onDDbIClick
onFocus

onKeyDown

o o o o o

onKeyPress

Chapter 4: Using the Spin JSP Tag Library

o o o o o 4

Spin simply passes these attributes to Javascript, so any errors generated by incorrect use of these
attributes are generated by Javascript and not by Spin.

onKeyUp

onMouseOut
onMouseOver

onMouseUp

onMouseDown

onMouseMove

Most Ul tags also support style, styleClass, and taglndex attributes. These attributes are similar to the
identically named attributes in HTML. See an HTML reference for usage descriptions.

Table 4-5 lists the JSP user interface tags implemented in Spin. Because these tags mirror HTML tags

of the same or similar name, you can find further details j

n HTML reference document.

Table 4-5: JSP user interface tags implem in SRin
|

Tag name Implemented by Spin class Equivalent HTML

button ButtonTag <input type="‘button”>

cancel CancelTag <input type="“submit”> with a
default value of cancel/

checkbox CheckBoxTag <input type=*“checkbox”>

file FileTag <input type="file”’>

form FormTag All the other tags must be
contained by the spin:form tag to
gain their extra functionality.

hidden HiddenTag <input type="hidden”>

option OptionTag <option>

password PasswordTag <input type="password”’>

radio RadioTag <input type="radio”>

reset ResetTag <input type=""reset”>

select SelectTag <select>

submit SubmitTag <input type=""submit”>

text TextTag <input type="text”>

textarea TextAreaTag <textarea>

4.5

Spin User’s Guide

Although similarly named HTML tags give you the same functionality as user interface JSP tags, JSP
provides some data storage capabilities that HTML does not. This, and other attributes of JSP are
demonstrated in the following example.

1 Enable Spin’s debug web server:
Edit>Preferences>Debug Server tab
Set WebServerEnabled to true

2 Create a new capsule and mark it as a servlet:
File>New Capsule
Capsule>Edit Properties

3 Sclect Type Java Servlet and close the dialog box.
Change the name of the capsule to frodo.

5 Within the capsule, insert a JSPTemplate:
Insert>com.webgain.spin.html>JSPTemplate

6 Double-click on the JSPTemplate icon and type t lowing in the dialog box:

public_htm/frodo. ht m
7 Close the dialog, select the JSPTemp, nNand insert a ServletGet behavior.

e ico
Behavior>UserBehavior>SendetGet
8 Set the capsule to respon8 h Gét and Post HTML requests:

Activate On>caps€.ServietRequest.doPost

9 Create a new text file called f r 0do. ht m within the directory spi n/ publ i c_ht i .
Paste the following into the new file:

<%@page | anguage="java" buffer="4kb" isErrorPage="fal se" %
<v@aglib uri="/WEB-INF/1ib/SpinTags.jar" prefix="spin" %
<HTM_>
<HEAD>
<TI TLE>
Tag Exanpl e
</ TI TLE>
</ HEAD>
<BODY>
<spin:form action="frodo" nethod="GCGET">
<spi n: checkbox name="checkl"/>Check One

<spi n: checkbox name="check2"/ >Check Two

</ spin: forme
</ BODY>

10 Save the file and run the capsule.
File>Run (or Ctrl-R)

Your browser should now show two checkboxes. Click on the buttons and they change. Here’s what
the JSP lines of the file do:

4.6

Chapter 4: Using the Spin JSP Tag Library

The first two lines specify that the file contains JSP tags. (See the JSP documentation for more details.)
The most important attribute is

prefix="spin".

This tells the JSP compiler that

<spi n: somet hi ng
is the start of a JSP tag.

Next, the
<spi n: form acti on="frodo" method="CET">
line specifies that a Spin form is to be created and that submitting the form from a browser will result

in an HTTP Get request sent to the frodo servlet. This tag provides the hook to the ServletGet action
you added to the JSPTemplate.

The

<spi n: checkbox nane="checkl" checkedz"¥afy\se” >Check One

<spi n: checkbox name="check2" ecked¥’f al se”>Check Two

specifies that two checkboxes are to be crigaged. Ot is labeled “Check One” and the other “Check
Two”. When the button is checked (and tl hgnit button you will add below is pressed), the servlet
will be passed parameters telli h ch@ckboxes are checked by using the name attributes. The

tag is a standard HTN o break the line so the boxes are on separate lines.

Let’s make the example more interesting. Open the HTML file again. After the two checkbox lines,
add the following new lines:

<spi n:radi o nane="radi 0" val ue="red" checked="true"”/>Red
<spi n: radi o name="radi 0" val ue="bl ue" checked="fal se”/>Bl ue
<spi n:radi o nane="radi 0" val ue="puce" check="fal se”/>Puce

Save the file and refresh your browser. Three radio buttons have appeared. Since the tags specify the
name attribute of each is “radio” they are grouped together and only one button in the group may be
pushed. If a submit button were present and pushed, the selected button would be sent to the servlet.

Note that all JSP tags require their attribute values (the text to the right of the = sign) to be enclosed
between quotes. Probably the most common error in using JSP tags is forgetting the quotes. All
attribute names are case-sensitive.

Note also that every attribute specified in a JSP tag is of the form

nanme="val ue"

even if the corresponding HTML tag doesn’t take an argument. This is simply standard JSP syntax.
Now add a submit button.

In your HTML file, after the last radio tag, add the following:

<spi n:submt name="submt" val ue="Make it so!"/>

Save the file and refresh your browser. Click the checkboxes and radio buttons, then push the button.
See your data disappear! The trick is, that although the servlet saw the updated values for the buttons,

4.7

Spin User’s Guide

it didn’t put them into the new HTML when the browser refreshed (after the submit button was
pressed). Go to the ServletGet multi-action in the capsule and insert a new child behavior.

| nsert->Behavi or->Acti on.

Double-click the new behavior’s icon and tell it to:

Activate if parent.Behavior. activated

| f= capsul e. get Paraneter ("submit") !'= null
Send to: actor

Message: set FornFilll nParaneters

Eval =: capsul e. get Al | Paraneters().

Close the editor window, then use the up-arrow button to position the new behavior before the
SendDocument behavior.

We’ll explain what all that means in a moment. First, you need to know that when the submit button is
pressed, the values for the widgets on the form are sent to the servlet, and Spin stores them in a hash

table. That table is accessed by sending the capsule the age getAllParameters(). So, the result of

the above actions is that when the parent behavior (ghe SefyletGet) is activated, the actor (the
JSPTemplate) is asked to fill in its parameters frdfn thgse held by the capsule.

Refresh the browser and push some butt ow Rit the submit button. This time, the settings are
remembered. This “rememberigg®as one vantages Spin’s JSP tags have over standard HTML
forms.

Attributes for Individ@er Interface Tags

The tables in this section detail the attributes you can specify for each Spin user interface tag. Be sure
to enclose all attribute values in quotation marks. All tag attributes for these tags may be specified at
runtime.

button tag attributes

attribute required what it does
name no The identifier for the action button
value no The label which will appear on the button

Table 4-6: cancel tag attributes

attribute required what it does
name no The identifier for the cancel button
value no The label which will appear on the button.

Also, the value which will be sent to the
servlet if the button is clicked. Note: This
attribute defaults to “Cancel” if it is not
specified.

Chapter 4: Using the Spin JSP Tag Library

Table 4-7: checkbox tag attributes

attribute required what it does

name yes Specifies a name for a checkbox

value no Defines the value which will be sent to the
servlet when the box is checked.

checked yes Specifies whether the checkbox is initially
checked

Table 4-8: file tag attributes

A

attribute required what it does

accept no

maxlength no

name yes Identifies to the servlet which file tag is
providing input

size no Width, in characters, of the typein field.

value no Initial value sent to browser

Table 4-9: form tag attributes

attribute required what it does

action no Specifies which capsule runs on the
server when the form is submitted

enctype no Specifies encoding type. See an HTML
reference.

focus no For Java scripting

method no Specifies how the form data is sent to
the web server when it is submitted.
GET and POST are two acceptable
values.

target no For Java scripting

4.9

Spin User’s Guide

4-10

Table 4-10: hidden tag attributes

attribute required what it does
name yes Specifies the name of the field to the servlet
value no The information you want stored

Table 4-11: option tag attributes

attribute

required

what it does

initialvalue

no

Used with select tag, specifies the value sent
to the servlet when the menu item is
selected.

r\
Table 4-12: password tag attributes D?

attribute required what it does

maxLength no Specifies maximum length of the input

name yes Identifies password box to the servlet

size no Specifies size of password box (in number
of characters)

value no Default value

Table 4-13: radio tag attributes

attribute

required

what it does

name

yes

All same-named radio buttons are part
of the same group (max of one pushed
within the group)

value

The value which is sent to the web
server if this radio control is checked
when the form is submitted.

checked

yes

Whether button is initially checked
when the form is rendered

Chapter 4: Using the Spin JSP Tag Library

Table 4-14: reset tag attributes

attribute required what it does

name no Ignored since reset is handled by the
browser (and not the servlet!)

value no The button’s label

Table 4-15: select tag attributes

attribute required what it does

multiple yes Specify that the menu supports multiple
selections (Note: Spin currently
remembers only one selection — even if
the menu supports multiple).

name yes Identifies the menu to the servlet

size no Height, in lines, of the menu.

initialvalue no Specifies a default selection in the
menu.

\V

Table 4-16: submit tag attributes

attribute required what it does
name no The identifier for the submit button
value no The label in the button. Also, the value

which is sent to the servlet if the button
is clicked.

Spin User’s Guide

4-12

Table 4-17: text tag attributes

attribute required what it does

maxlength no Maximum number of characters
allowed to be typed in text box

name yes Identifies text box to server.

size no Size in characters of the text box.

value no Initial text to display.

Table 4-18: textarea tag attributes

attribute required what it does

cols no Width of the text area in characters.
name yes Identifies text box to server

rows Height of the text area in characters
value no Initial text to display.

\J

\d

Chapter 4: Using the Spin JSP Tag Library

Creating a JSP with Embedded Spin Capsule

This section introduces the capsule of type JSP Bean, and provides a larger context for working with
JSPs in Spin. Eatlier sections in this chapter explained individual JSP tags. The following example
show you how to incorporate JSPs into a Spin project.

1 Start Spin.
2 Create a new capsule

File -> New Capsule
3 Change the Capsule type to JSP Bean

a Capsule ->Edit Properties (or right-click the capsule bean icon).
b Select the JSP Bean radio button.
¢ Click the Close button.

4 Add content to the capsule

Now add whatever content is appropriate & your praject to the capsule. For this
example, which constructs a page tq,displaygthe time, do the following:

a Click the capsule bean to select it
Insert -> com.webgaig

b Select the capsmleybeanoain!
Insert -> co

) dain.sp
c Select the HTWLI€xt bean.

Insert -> Behavior -> Action

d Double-click on the action behavior you just created to edit it. Set the fields in the dialog box
as follows:

Activate On: capsule.Capsule.newMethod... When prompted, name the method
getTime.

Send To: actor

Message: print

Eval: capsule.getWriterO

e Select the HTMLText bean.
Insert -> Behavior -> Action

f Double-click on the action behavior you just created to edit it. Set the fields in the dialog box
as follows:
Activate On: actor. WhenOutput.whenOutput
Send To: actor
Message: setText
Eval: Clock.getCurrentTime

The capsule you just created will get and output the current time when it receives a “getTime” call.

4-13

Spin User’s Guide

4-14

5 Save the Capsule
a Stay in the capsule view. Select File -> Save.
b Navigate to a folder of your choice. Save the file as ¢l ock. j sp.
6 Add the Capsule to a Project
Activate the Project window.
Project -> Add
Select the capsule you just saved (clock.jsp). The file clock.jsp appears in the project window.

File -> Save

O & 0 T 9o

Save the project to the folder where you saved the capsule, naming the project | ock. zap.
7 Edit the JSP

a Opencl ock. j sp in your favorite text or HTML editor. You see that Spin has stored the
contents of your capsule at the top of the file, between the lines marked

<% // SPI N GENERATED: DO NOT MODI FY

and «
/1 END SPI N GENERATED: DO NOT MODI F

b Place your HTML and JSP conte ad and Body sections at the bottom of the file.
For this example, add t llowi elow the HTML <BODY> tag:

The current tinme is: net hod="get Ti mre"/ >

This line of text inc pin tag for communicating with the Spin capsule. See documentation

earlier in this chapter prmation concerning how this works.
e file.

8 Load the JSP in your browser With Spin still running and the Clock project window still open,
start your browser and go to the following address:

¢ Save and close

http://1ocal host/clock.jsp

If all works as expected, the browser should display something like the following:
The current time is: Wd Oct 31 14:56:27 PDT 2000

Working with EJBs in Spin

Configuring Your Environment

Spin to be aware of that EJB. This section explainsghe cofffiguration process, using the SimpleBank

Before using an EJB in a Spin capsule for the first time, must configure both your EJB server and
EJB that ships with Spin as a reference example.

This example documents configuration a e of the jBoss EJB server that ships with Spin. If you
are using another EJB server, see y! efver documentation for configuration procedures.
Conventions

In these examples, Fi/eName denotes the install path to a program or file named FileName. So Spin
denotes the directory whete you installed Spin, (for example c:\Program Files\Spin) and jBoss denotes
the install directory for jBoss, which is Spin\jBoss.

Configuring the Server

This section explains the steps necessary to deploy EJBs to the jBoss EJB server. For each step
general information is given first, followed by the specific changes required for the Bank Transactions

project.

Copy the EJBs to the jBoss\deploy folder

You must place a copy of the EJB jar files in the /Boss\deploy folder in ordet for them to be
deployed. For the BankTransactions project, copy the file SimpleBank.jar to
JBoss\deploy\SimpleBank jar from Spin\exampleservlets\Bank\E]B.

Copy other files

If your beans require auxiliary files (e.g. a database) then copy those files as well. The
BankTransactions project requires the ejbdata database. This database has been distributed with Spin
in the Spin\pointbase\databases foldet, and for this configuration should be left where it is.

5-1

Spin User’s Guide

Edit the jBoss.properties file

The jBoss.properties file contains, among other things, information regarding java database drivers.
Open the file in a text editor and check if your database driver is present. If your driver is not present
then you should add it to the list. The BankTransactions project uses the Pointbase net driver,

com poi nt base. net. net JDBCDr i ver . If you open the /Boss\conf\jBoss.properties files, you
will see that Spin ships with that driver added to the driver list.

Add Database Drivers

In order for jBoss to use your database driver, it must be able to find the driver’s .jar file. An easy way
you can facilitate this is to place the driver .jar files in the] Boss\ | i b\ ext folder.

For the BankTransactions project, the driver .jar file is pbclient31RE.jar. This file ships in the
Spin\pointbase\classes folder, where it is referenced from the jBoss configuration files, so you do not
need to move it.

Edit the jBoss.conf file

The jBoss.conf file contains a variety of cgnfigura§n information. If your EJB requires a database

connection, this is where you set up the ¢ ctionYpool information. For the BankTransactions

<MLET CODE = taSourcel npl " ARCHI VE="] boss.jar,../../
../ poi nt base 31RE. jar" CODEBASE="../lib/ext/">
<ARG TYPE= VALUE="j dbc: poi nt base: //127.0.0. 1/
ej bdat a" >

<ARG TYPE="j ava. |l ang. Stri ng" VALUE="BankDat aSource">
<ARG TYPE="j ava. | ang. Stri ng" VALUE="com poi nt base. net. net JDBCDri ver">
<ARG TYPE="j ava. | ang. Stri ng" VALUE="public">
<ARG TYPE="j ava.l ang. String" VALUE="public">
</ MLET>

Configuring Spin

5-2

This section explains the steps required to make your EJBs accessible to Spin.

Process EJBs for Spin
Start Spin.

When Spin finishes loading, you see a Project window. Depending on your settings, you may also see a
Console window. Click in the Project window, then select File -> Create Spin EJB... In the Open
dialog box that appears, navigate to the first of your EJB .jar files you wish to process, select it, and hit
Open. Spin copies the bean to the Spin\beans\ejb folder and processes the EJB into a format that it
can use. Information regarding the status of the process is output to the Console window. If the
processing is successful, you see a message that the bean(s) was found and successfully processed.

Repeat these steps for each bean you wish to process.

Chapter 5: Working with EJBs in Spin

For the BankTransactions project, you need to process the SimpleBank.jar file, which can be found at

Spi n\ exanpl eser vl et s\ Bank\ EJB\ Si npl eBank. j ar.

Enable the Web Server in Spin

To test servlets in Spin, you must enable the web server. Click in the Project window, then select Edit -
> Preferences... In the Preferences Dialog Box, select the DebugServer tab. Change the
WebServerEnabled radio button at the bottom of the dialog box to “true”. Close the dialog box. The
Web Server will now be enabled the next time you start Spin.

Enable jBoss in Spin

To have jBoss started automatically when Spin starts up, you must enable it in Spin. Click on the
Project window, then select Edit -> Preferences.... In the Preferences Dialog Box, select the
EnterpriseJavaBeans tab. Change the JBossE]BServerLoadsAtStart radio button in the middle of the
dialog box to true. Close the dialog box.

Enable Pointbase in Spin

In order for the EJB to talk to the Poinba
Edit->Preferences one more time. Select
button to true. Close the dial

g, databd§e, you must start the Pointbase server within Spin.
-b\ gneraPtab. Set the PointbaseServerLoadsAtStart radio

Restart Spin

In order to start the jB erver, you must restart Spin. Quit the Spin application and then start it up
again.

As Spin starts up, it spawns a new process which loads jBoss. You can check the status of the jBoss
Server by choosing the jBoss tab in the console window. Among other things, you will see information
regarding the E]Bs you have deployed and the database connections you have set up.

Running

the BankTransactions Example

Now that you have configured your environment, you may run or create projects that use the EJBs
you specified in the previous sections. Follow the steps in this section to play with the Bank
Transactions example.

1 Open the Project File (This step assumes that you have an open Project view resulting from
your re-starting Spin in the last section.)

To run the BankTransactions example, begin by opening the project file in Spin. Click on the
Project window, then select File -> Open. Navigate to the folder

Spi n\ exanpl eSer vl et s\ Bank\ BankTr ansact i ons, and open the file

BankTr ansacti ons. zap.

2 Open the Capsule

The Project window now shows the contents of the BankTransactions project. One of the items
is a Spin capsule, called BankTransactions.zac. Open this file by double clicking on it. In a

5-3

Spin User’s Guide

separate Capsule Outline window, you see the outline format for the BankTransactions capsule.
Near the top of the outline, you see the SimpleBank EJB that is used by this example.

3 Run the Example

Click on the capsule window, then select File -> Run. This causes a variety of things to happen,
including the launching of your default browser. If all goes well, you see a logon screen for our
simple bank project. Note that output from our session is sent to the Console window. It should
now tell you that the server has been started, among other things.

Play around with the BankTransactions example. To get past the logon screen, enter a valid
account and password. One valid account is “111111” with password of “whatever”.

Learning from the Bank Transactions Example

5-4

The BankTransactions project uses the SimpleBank EJB as a way to talk to the database to validate
logons and handle deposit and withdrawal transactions. Chgck out the way the SimpleBank object is
used within the Spin capsule. Some things that may he terest ate:

O The bean itself had to be included and conff . Doul§le-click the SimpleBank bean instance to
see which properties have been set.

O The “findAccount” action
information that is sent t

O The “testPassw@® Onditi
user.

O The “storeAccountName” action requests the name associated with the account from the bean,

the fi imaryKey() method on the bean, using account

sulglduring the servlet post request.

al expression uses the EJB to validate the password entered by the

which in turn retrieves it from the database.

O The “ifSufficientFunds” conditional expression asks the bean if there are sufficient funds for the
requested withdrawal before processing the user request

O The “deposit” action tells the bean how much money to deposit to the account

Events

This appendix lists the events generated by Spin’s built-in behaviors, capsules, and other components.
In addition to the events listed here, many beans generate their own specific events. For details of the

properties, methods, and events of a particular bean, choose View>Get Object Info. Similarly, for

details on Java classes, see their JavaDoc documentaﬁo&

<\
Events Generated by Behaviﬁs(

All behaviors generate: Q

fhenRet hr ow

IfTest

IfTest Behaviors generate:

Test.ifTrue
Test.ifFal se

ActionGroup

ActionGroup Behaviors generate:

Behavi or. acti vat ed

Timeline and Counter

Timeline and Counter Behaviors generate:
Wen. started
When. st opped
Count er. count

Spin User’s Guide

Events Generated by Capsules

A-2

All capsules generate:

WhenCapsul e. start ed
WhenCapsul e. cl oned
WhenCapsul e. i sNewd one
WhenCapsul e. pr opert ySet

And, for each method defined on a capsule:

Capsul e. net hodNane

Applet Capsules

Java class com webgai n. spi n. Capsul eAppl et d ass.

Run-time instances inherit from j ava. appl et . | 8t , and generate the events that class
generates.

Application Capsules P

Java class com we spiWg. Capsul eAppl i cati ond ass.
Run-time instances in om j ava. awt . Fr ame, and generate the events that class generates.

Nonvisual Actor Capsules

Java class com webgai n. spi n. Capsul eSt ati cd ass.

Visual Actor Capsules
Java class com webgai n. spi n. Capsul eConponent Cl ass.

Run-time instances inhetit from j ava. awt . Cont ai ner, and generate the events that class
generates.

Servlet Capsules
Java class com webgai n. spi n. Capsul eSer vl et O ass.

Servlets generate:

Ht t pServi ce. htt pServi ce
Ser vl et Request . doDel et e
Ser vl et Request . doDest r oy
Ser vl et Request . doGet

Appendix A: Events

Servl et Request . dol ni t

Servl et Request . doOpt i ons

Ser vl et Request . doPost

Ser vl et Request . doPut

Servl et Request . doTr ace

Ser vl et Request . get Last Modi fi ed

Java Server Page Bean Capsules
Java class com webgai n. spi n. Capsul eJSPBean.

JSP beans generate:
JSPRequest . dol ni t

Events Generated by Other Built-in @omponents

When immediate subcomponents move tQ hit th%ldary their scene, or move to hit one another

within their scene, the built-in bean Scen erate

Boundary. hit
Col lision.hit

A-3

Spin User’s Guide

A-4

User Interface Reference

This appendix describes the following Spin editor windows and other user interface features:

O o o o o o

“Viewing JavaDocs” on page B-1
“Project Editor” on page B-1

“Capsule Outline Editor” on page B-5 «
“Toybox Editor” on page B-13 %
“Debugging Using an Erro 'ndo%e -14
“Debugging U i

sing the Co ind®w” on page B-15
Viewing JavaDocs :

You can display JavaDoc documentation using any one of the following methods:

O

O
O
O

View > Get Object Info

Actor > Get Object Info

Control-l (Command-I on the Macintosh)
Right-click (Command-click on the Macintosh).

Project Editor

You use the project editor to manage your project at the top level. You must use the project editor if
your project contains more than one capsule or if you want to deploy your project as a web archive
(WAR) file. (To perform tasks on a capsule and its components, use the capsule outline editor; see
“Capsule Outline Editor” on page 5.) Figure B-1 contains an example of the project editor.

B-1

Spin User’s Guide

E’ bugdb.zap Project =181 x]

File Edit Project View

@ bugdb.zac
[+ £ htmi

v
Figureje@or Window

File Menu

B-2

The File menu in the Project Editor window contains the following menu options:

New Capsule Creates a new capsule and opens a new capsule outline editor window.
New Project Creates a new project and opens a new project editor window.

Open Opens an existing project or capsule.

Close Closes the current window.

Save Saves the current project.

Save As... Prompts for a new file name under which to save the current project.
Save As Jar This function is enabled only in the Capsule Editor.

Save Behavior This function is enabled only in the Capsule Editor.
Run This function is enabled only in the Capsule Editor.
Print... This function is enabled only in the Capsule Editor.

SQL Connections Opens a dialog that allows you to manage SQL connections. Enabled only when the
Spin SQL components are loaded.

Create Spin EJB...Prompts for an EJB to import into Spin, then adapts that EJB to make it usable in a
Spin capsule. Enabled only if the application server classes and javax.ejb classes
from your application server are in your classpath. (This menu item appears only
when classpath includes ejbsuptjar, which it does on a normal installation.)

Appendix B: User Interface Reference

Quit Exits Spin, prompting you to save any unsaved windows.

Edit Menu

Cut This function is enabled only in the Capsule Editor.

Copy This function is enabled only in the Capsule Editor.

Paste This function is enabled only in the Capsule Editor.

Delete Removes the currently selected files from the project.

Preferences... Opens the Preferences dialog box so that you can modify the following fields:

General

JDKDocsDirectory Specifies the directory (in addition to the Spin dOCS directory) in which
the Get Info command looks fgs documentation.

DebugPortStartOf32 Specifies the first portj of 32 ports used by Spin’s debugger. The
default is 9544.

ExternalCommandPort Speclﬁes ap in cafuse to send itself messages. Used when Spin is

exter t one instance of Spin is already running. The

PointBaseServerLogd Bt
Specifies whether Spin should load the point base server at startup. The
default is false.

Display

EditorFontSize Specifies the font size used in editor windows.
DialogFontSize Specifies the font size used in regular dialogs.
ScriptOptions

WithMenuSearchDepth ~ Specifies the depth of menus that Spin will prebuild.

Imports Lets you specify the names of Java packages so you do not have to specify
full package class names.

EnterpriseJavaBeans
DefaultContextFactory Specifies the name of the EJB context factory on the EJB server.

DefaultEJBServerURL Specifies the URL for your default EJB server. The default is
t3:/ /localhost:7001.

DefaultHomePrefix Specifies the prefix JNDI name used to look up the home interface to
create an EJB instance.

B-3

Spin User’s Guide

JBossEJBServerLoadsAtStart
Specifies whether Spin loads the JBoss EJB server at startup. The default
is false.

DefaultUrlPkgPrefixes To be supplied.

DefaultPropertiesFile Lets you specify a filename from which all EJB properties except Home
will be read. Properties specified in this file override properties specified
in the EJB menu.

DebugServer

URLOrDirectoryForNonServletRequests
Specifies the directory (relative to Spin’s installation directory) used to
satisfy requests to the web server that do not invoke a servlet.

ServerPort Specifies the port used by Spin’s built-in web server, which is used to test
servlets.

NumberOfPostParameters Specifies the number ofgearan¥gters that can be passed to a servlet with a
Post request.

ServletAccessDirectory Specifies the dihgctory Ma which Spin looks for any servlet that is not part

of a
WebServerEnabled Sp hether Spin’s built-in web server is enabled. Default is false.
Project Menu
Add... Imports a file into the project editor.
Remove... Removes any currently selected files from the project.
Project Inspector Opens a window from which you may edit the properties of a currently

selected Spin capsule or JSP on the Project file list.

Show Full Path/Hide Full Path
Toggles between showing only the file name or the entire path of files
listed in the Project file list. The default is to display the file name only.

Deploy Project as WAR Packages all the project files into a WAR file. Used for deploying servlets
and web applications.

View Menu

B-4

Console Toggles on and off Spin’s console window.

Spin Documentation
Displays the Spin Documentation page in your default browser.

Spin Resources Display’s Spin’s home page.

About Spin Shows the About Spin dialog. Click anywhere on the window to close it.

Appendix B: User Interface Reference

Capsule Outline Editor

You use the capsule outline editor to insert, edit, and manage components within a capsule.
Figure B-2 contains an example of the capsule outline editor.

E bugdb.zac Capsule Outline

Inzert “iesw Outline Actor

o oy #|[¢][¢] o4

File Edi

A 4

o

PRSP o 00

biugdh

DEE EDEESES

iSM ey
buglD
errarstring
displayFind

displayBug
displavResults
doGet

doFost
displavError
displaykotFound

JSPTemplate

\

Figure B-2: Capsule Outline Editor Window

Drag and Drop in the Outline

You can drag and drop objects in the capsule outline to reorganize them. When you drag an object’s
icon onto another object, that object (along with all its children) becomes a child of the other object.

You can also create a copy of what you are dragging, leaving the original intact. To do this, hold down
the Control key (Windows) or the Option key (Macintosh) while you drag.

B-5

Spin User’s Guide

Using the Toolbar

You can use the toolbar buttons in the capsule outline to perform most of the functions available

from the Outline menu. Figure B-1 shows the capsule outline toolbar.

% bugdb.zac Capsule Dutline I =10l x|
File Edit Insert ‘iew Outline Actar

B-6

Figure B-1: Capsule Outline editor toolbar

Expands selected item.

Expands all items in outline. ?«

Collapses selected it

Enables or debugging. For details, see the description of Outline>Debug>Enable
Debugging om¥fage B-11.

Adds or removes watch variable. For details, see the description of Outline>Debug>Add
Watch Variable on page B-12.

Adds or removes breakpoint. For details, see the description of Outline>Debug>Add
Breakpoint on page B-11.

Shows methods. For details, see the description of Outline>Show Methods on page B-11.

Shows events. For details, see the description of Outline>Show Events on page B-11.

Disables the arrows that show the flow of activation events.

Appendix B: User Interface Reference

g

40

]

Shows the flow of activation events to and from the selected item. For details, see the
description of Outline>Show Activation Events on page B-11.

Shows the flow of all activation events.
Disables the arrows that show the flow of events sent to action targets.

Shows the flow of events sent to action targets by the selected item. For details, see the
description of Outline>Show Action Targets on page B-11.

Shows all action targets. For details, see the descgiption of Outline>Show Action Targets on
page B-11.

Moves selected item up. P?
Moves sele %

Moves selected item to top.

Ei:l Moves selected item to bottom.
File Menu
New Capsule Creates a new capsule and opens the capsule editor on it.
New Project Creates a new project and opens the project editor on it.
Open Opens an existing capsule.
Close Closes the current window. If the current window is the last window, also
closes Spin.
Save Saves to the currently defined file name.
Save As Prompts for a new file name under which to save the current capsule.

Spin User’s Guide

Save As Jar Writes out a finished capsule into a .jar file (Java archive file) in a format
specific one of the following types of capsule:
® applet
m application
® visual actor (component)
® nonvisual actor
m secrvlet

Save Behavior Saves the selected behavior. The saved behavior is usually a group
behavior that is the root of a tree containing other behaviors and data
components. This behavior is saved as a JavaBean into the behavi or s
subdirectory of the Spin installation directory.

Run Precompiles all Java expressions and runs the current capsule as if you
were running it as a stand-alone application or as an applet in a browser.

Print Prints the contents of the curtegt outline window.

SQL Connections Opens a dialog from whgch yo® can change parameters related to your
SQL connections. ERablgd only§yhen the Spin SQL components are
loaded.

Create Spin EJB... Alloggsgyou tol a.j ar file. Spin then copies the specified bean to
S an§/ ej b, and processes the EJB into a format that Spin can
use.

Quit xits Spin, prompting you to save any unsaved windows.

Edit Menu

The Edit menu contains the Cut, Copy, Paste, Delete, and Preferences commands.You can use Cut,
Copy, Paste, or Delete on any item or selected text in the capsule outline. You can copy and paste
text and components between Spin windows, but not to and from other applications. The
Preferences command displays the Spin Preferences dialog box. You can set Spin preferences using
any editor window’s Edit>Preferences command; for more details, see the Preferences dialog box
description on page B-3.

Insert Menu

Capsule Inserts a capsule into the outline.

Scene Inserts a scene (a visual component used to group other visual components). Note
that a capsule is associated with an implicit scene by default, but you can add
additional scenes to a capsule.

Behavior Inserts one of the following built-in Spin behaviors:
Action: An event that invokes a method or script.

Script: Arbitrary Java code.

Appendix B: User Interface Reference

IfTest: A behavior that generates specific events when an expression evaluates to
true or false.

ActionGroup: A set of actions grouped into a single unit.
Counter: An object that maintains a running count when activated.

Timeline: An object that allows the modification of actor properties over a span of
time.

User Behavior Inserts one of the behaviors saved using the File>Save Behavior command. This
menu item may include any of the following:

ServletGet: An action that activates when capsule.ServletRequest.doGet is invoked.
Drag: A Spin behavior that allows a visual component to be dragged.
Spiral: A Spin behavior that causes a visual component to spiral when clicked.
Jump: A Spin behavior that causes a visual component to jump when clicked.

Data Item Inserts one of the built-in data type can be used in a capsule:

int: An integer value.

boolean: A true/false

int value.

color: A color (java.awt.Color).

Hashtable: A name/value object pair (java.util. Hashtable).

Vector: A growable array of objects (java.util. Vector).

Point: An X/Y position in two-dimensional space (java.awt.Point).
Rectangle: A rectangle definition (java.awt.Rectangle).

Dimension: A height and width value (java.awt.Dimension).

URL: A “Uniform Resource Locator” (java.net.URL).

HttpCookie: Private information on the client.

AWT Components
Contains Sun’s Abstract Windowing Toolkit widgets, which can be used as actors:

Button: An object that can be labeled and that activates events when clicked.
Checkbox: A box, with associated text, that displays a binary selection.
Choice: An object often used for displaying drop-down menus.

Label: Displays specific text at a specific location.

List: A list of strings.

Scrollbar: A visual scrollbar.

B-9

Spin User’s Guide

TextArea: An area in which multiline text can be displayed and edited.
TextField: A line of text that you can set to be edited by the user.

Frame: An application window that you can set to be resized by the user.

The bottom part of the Insert menu contains an entry for each package Spin finds in the files located
in the beans subdirectory on startup. These are the actors you can use in capsules. If you have
installed the Standard Beans, this section initially contains five entries:

O com.webgain.spin.demo, the Juggler visual actor
com.webgain.spin.display, various sample visual actors
com.webgain.spin.html, various actors useful for creating HTML documents

com.webgain.spin.misc, various sample nonvisual actors

o o o o

com.webgain.spin.sq|, various actors useful for connecting to a database and manipulating its

content <

View Menu \

Open Toybox Opens a toyb itor £8r this capsule.

Open Layout @) youfi editor either for a selected scene or for the implicit scene
asso@lated®vith a capsule.

Palettes pens separate palette windows that you can use instead of the Insert
menu to insert actors, behaviors, and data items into a capsule.

Reveal Palettes Brings the palette windows to the front if they are hidden by other
windows.

Edit Selected Object
Used to edit an actor, behavior, capsule, or data item. Opens the editor for
that entity. Double-clicking on an entity’s icon is usually a shortcut for this
command.

Get Object Info Opens an Info window for the selected actor. The Info window allows
you to view Variables, Properties, Methods, Events, and JavaDoc (when
available) for that actor.

Source Opens a window that shows the source generated when you compile your
capsule.

Console Toggles on and off Spin’s console window.

Spin Documentation Displays the Spin Documentation page in your default browser.

Spin Resources Display’s Spin’s home page.

About Spin Shows the About Spin dialog. Click anywhere on the window to close it.

Outline Menu

Collapse Collapses the selected outline item if it has children.

Appendix B: User Interface Reference

Expand Expands the selected outline item if it has children.
Expand All Expands all outline items in the current view.
Move Moves the selected outline item up or down among its siblings.

Show Activation Events ~ Displays arrows that show you the flow of activation events (events that
activate behaviors). You can choose from None, To/From Selection, and
All. If you choose To/From Selection, Spin displays only the activation
events that activate the selected item or are activated by the selected item.

Show Action Targets Submenu
Displays arrows that show you which actions send events to which action
targets. Action targets are actors to which events are sent. You can choose
from None, To/From Selection, and All. If you choose To/From Selection,
the arrows point to only those action targets to which the selected item
sends events.

Show Methods Displays arrow bats that poin
bars denote defined cap

items activated by methods. Black arrow

thods; red arrow bars denote undefined
capsule methods. Thg®arrow baf\is displayed as a solid color when it

points to the gpecific that uses the method; when pointing to a

t confains a child that uses the method, the arrow bar is
llipses (...) show that the item can be activated by

Show Events isplays arrow bars that point to items that send an event. Black arrow
ars denote defined capsule events; red arrow bars denote undefined
capsule events. The arrow bar is a solid color when pointing to the
specific item that sends the event; when pointing to a collapsed item that
contains a child that sends the event, the arrow bar is displayed in outline.
Ellipses (...) show that the item sends more than one event.

Show Properties Displays an icon next to items with capsule property bindings. The icon is
a solid color when pointing to the specific item that has capsule property
bindings; when pointing to a collapsed item that contains a child with
capsule property bindings, the arrow bar is displayed in outline.

Debug Submenu Servlets are not visual and benefit from additional capabilities to debug
them. Except for the Enable Debugging option, the following menu items
are enabled only when using servlets.

Enable Debugging: Enables debugging and opens the debugger window
for the servlet displayed in the outline. If debugging is already turned on,
this menu item disables debugging.

Add Breakpoint: Adds the selected behavior to the list of breakpoints.
Breakpoints are displayed in the outline by a circle to the left of the
associated behavior.

Remove Breakpoint: Removes the selected behavior from the list of
breakpoints.

Remove All Breakpoints: Clears all active breakpoints.

B-11

Spin User’s Guide

Add Watch Variable: Adds the selected data item to the list of variables
whose value can be watched, and displays it in the debugger window. Each
step in the execution of a servlet refreshes all the watch variables in the
debugger window.

Remove Watch Variable: Removes the selected data item from the list of
watch variables.

Remove All Watch Variables: Clears all active watch variables.

Capsule, Behavior, or Actor Menu

B-12

The title of the Capsule, Actor, or Behavior menu changes according to the currently selected object.
You use this menu to edit attributes of the selected object. The menu contents are identical to those
of the pop-up menu that appears when you Right-click (Command-click on a Macintosh) on the
selected object.

Capsule Menu %,\

Edit Capsule Opens an outline editogfor the\elected capsule.
Get Object Info Opens the Object Info% displayjng the JavaDoc for the Capsule_
Edit Properties ~ Opens the % editor for the selected capsule:

Behavior Men@
Edit Behavior Opertls the behavior in its own window for editing, (If the behavior is already open,

this brings its window to the front.)

Delete Deletes the behavior from the capsule.

Actor Menu

The Actor menu is the same as the pop-up menu available on an actor. It contains:

Edit-Custom Opens the custom editor provided by the JavaBean for editing the selected actor.
Enabled only when a custom editor is provided. This is the same editor you get
when double-clicking on the actor, unless no custom editor exists, in which case a
generic editor opens instead.

Edit-Generic Opens the generic editor, which allows you to edit all the properties of the selected
actor.
Edit Name Allows you to edit the name of the selected actor.

Get Object Info Opens the Object Info window. This window provides information on the Actot’s
variables, properties, methods, and events, and displays JavaDoc documentation.

Delete Deletes the actor from the capsule.

Edit Property Displays a submenu of all the properties available to the selected actor. When you
select a property, Spin displays a dialog box that allows you to edit that property.

Appendix B: User Interface Reference

Toybox Editor

The toybox editor is a powerful editor that displays visual components using a graphical interface. The
toybox editor lets you manipulate visual components in the capsule while you are constructing it. The
toybox editor displays only visual actors. If an actor does not have a visual component, you must edit
it in the outline editor. You use the capsule outline editor to insert, edit, and manage components
within a capsule. Figure B-3 contains an example of the toybox editor.

r"_' Juggler.zac Capsule Toybox 0 = |EI|£|

File Edit Inzert Wiew Capsule

| start |

4=l

startbutton

b

[+=Il

stopbutton 4=l
Scro Juggler2 A

Figure B-3: Toybox Editor Window

Editing Handles

Each visual actor in the toybox view has an editing handle below it. You can hide the handle using
View>Hide/Show Editor. You can move the actor by clicking and dragging on the editing handle.
Rght-clicking on the editing handle (Command-click for Macintosh) displays a pop-up menu that is
the same as the Capsule Outline Editor’s Actor menu. (For details, see “Actor Menu” on page B-12.)

The editing handle consists of three parts:

O Icons representing the actor’s immediate children. This part is displayed only if the actor has
immediate children.

O The name of the actor. You can edit the name by double-clicking on it.

O The resize handle. This is a triangle on the right side of the editing handle that lets you change the
size of the actor. Resizing the actor with this handle is equivalent to manually editing the actot’s
size property.

B-13

Spin User’s Guide

Drag and Drop or Copy Objects in the Toybox

You can drag and drop objects in the toybox to reorganize them, but only if they are child objects of a
visual actor. You drag an object by dragging its icon onto the name tab of another object. That object
and all its children then become children of the new object.

You can also create a copy of an object by holding down the Control key (Windows) or the Option
key (Macintosh) while you drag.

Toybox Editor Menus

The menus in the toybox editor are the same as the menus in the capsule outline editor, except for the
following additions to the toybox editot’s View menu. Also, there is no Outline menu in the toybox
editor.

View>Open Outline Opens the capsule outline edight window.
View>Arrange Moves objects to th nt or back of the visual hierarchy. This menu item
changes the order of jects ¥h the outline view as well.

View>Hide/Show Editor = Hides the em% in the toybox view.

Running versus Editi

The toybox view lets y ay with a capsule while you edit it. When you add a new component to a
capsule, it is instantly active: separate compile and run phases are not required.

When a capsule is running, however, Spin must distinguish between permanent changes to a capsule
and those changes that occur only because the capsule is running. For example, if you add a drag
behavior to an actor, you can play with the actor by dragging it, but you probably do not want these
run-time changes to be a permanent part of the application. And they won’t be.

The toybox view distinguishes between run-time changes, which are temporary, and edit-time changes,
which are permanent. It does this by differentiating between changes caused by a behavior and
changes caused directly by you as a user. For example, changes in an actor’s position caused by a drag
behavior are not permanent, because they are caused by a behavior (even though the drag behavior
utilizes user input). However, if you move the actor by dragging its editing handle, that move is
permanent.

Debugging Using an Error Window

When testing an application in the toybox view, if an error occurs, a window containing the error
message opens. Double-click on the error message to open an editor on the code that caused the
errot.

Appendix B: User Interface Reference

Debugging Using the Console Window

Spin also has a console window. On Windows this is provided as text output in a DOS window. On
the Macintosh, this is provided in a window opened by MR]J.

Some failures report only to the console. These might be problems in the tool itself, problems within
a JavaBean that you are using, or simply text output printed to System.out. If you need to report any
errors in the operation of Spin, please check for console window messages that can help us identify
the problem and include the messages in your bug report.

To use the console window to help you debug your application, you can create script behaviors that
contain commands such as:

Systemout. println("got here");

When your script is activated, Spin will send your got her e message output to the console.

Q’\
>
O?\

Spin User’s Guide

B-16

Glossary

A

action behavior

A Spin behavior that receives an event as a stimulus and responds by invoking a method on an actor.
See bebavior. Compare action group bebavior, conditional behavior, counter bebavior, script behavior, timeline behavior,
user behavior.

action group behavior

A convenience allowing you to group several Spin behaviors so they can be moved or copied as a unit.
See behavior. Compare action bebavior, conditional bebavior, counter behavior, script behavior, timeline bebavior, nser

bebavior.

action target «

An actor to which a method is sent. See actor. @omparc€gctivation event.

activate

To send the stimulus to a behavior the caliges 1t to execute. See bebavior, stimulus. Compare deactivate.
activation event

An event that activates a bel¥avior. See bebavior, event. Compare action target.

actor

A Spin component to which you can assign behaviors; Spin allows you to use any JavaBean component
as an actor. Also, a Spin alias referring to the first actor above a behavior in the Spin capsule hierarchy.
See alias, behavior.

alias

One of the three Spin pseudovariables capsul e, par ent , or act or, that refer to the specific
entity fulfilling that role above the reference entity in the capsule hierarchy. See actor, capsule, parent.

applet

A small (typically) application that is downloaded in a web browser and executes on the web client.
Compare distributed application, servlet.

AWT

Abstract Windowing Toolkit, the components used to build a user interface in Java applications. See
user interface.

Glossary-1

Spin User’s Guide

B

bean
A Java component. See component.
behavior

A Spin entity having a stimulus and a response, used to cause an actor to do something, to
communicate with another actor, or to respond to user input. Because the stimulus is always an event,
a behavior is way to ensure that a given event is followed by the specified method execution, property
modification, or other event. See actor, event, response, stimulus.

browser view

The Spin view that allows you to see your servlet in a web browser as a user will see it. See view
Compare layout view, outline view, project view, run view, toybox view,

C

capsule

In Spin, a means of organizing an a ton ito modules, each having a hierarchy of components. A

ca

e Spi

capsule itself is a compog e cofitained in other capsules. Also, a Spin alias referring to the

first capsule above an entig capsule hierarchy. See afias.

child

A Spin entity that is directly beneath another in the capsule hierarchy. See capsule.

client

A computer or program that requests resources from a server. For example, a web client (browser)
requests web pages from a web server. A program can act as both client and server; for example, a web
server acts as a client when it requests data from a database server. Compare server.

component

A persistent reusable building block of code that works as one functional unit and is can be used in
various applications.

conditional behavior

A Spin behavior with an embedded 7 test. When a conditional behavior receives its stimulus, it
evaluates the associated 7f test, generating an i T Tr u€e event if the result is true, or an i f Fal se event
if the result is false. See bebavior. Compare action behavior, action group bebavior, counter bebavior, script behavior,
timeline bebavior, user behavior.

Glossary-2

Glossary

connection pool

A group of database connections that remain open for any transactions that need them, so that a
transaction can use them without the overhead of opening and closing them explicitly.

cookie

A text file sent by a web server, which the web browser stores on the client and sends back in response
to requests from the same web server, used by Spin to store a session identifier. See session, web server.

counter behavior

A Spin behavior that counts time, starting when it receives its stimulus, and generates specified events
at specified intervals until it reaches the specified stopping point. See bebavior. Compare action bebavior,
action group bebavior, conditional bebavior, script bebavior, timeline bebavior, user behavior.

D ,\
deactivate ?

To cause a behavior to stop executing. Compa vate.

deploy

To move a file into a pr envifgnment where it can be used. Typically this relates to making

distributed application

An application whose parts run on more than one computer across a network. Compare applet, servlet.

E

editing handle

Small tabs attached to a Spin actor or behavior, visible in the toybox view, that allow you to modify the
entity to which they are attached. See actor, behavior, toybox: view.

EJB

Enterprise JavaBean, a robust bean that adds portable access to services such as database access,
distributed transactions, and messaging. See bean.

event

An occurrence of possible interest to an application, such as a mouse click.

Glossary-3

Spin User’s Guide

F

form parameter

A name and value pair derived from an input field of a web form.

H
HTML

hypertext Markup Language consists of sets of tags that matk the structure of a web page’s contents,
thus enabling a web browser to determine how to display the page.

HTTP

web pages and other data. See web server.

Internet
A worldwide network of co ters §@nne@ged by various means to allow the exchange of information.

J
JDBC

HyperText Transfer Protocol, the protocol used by web server<d browsers to request and return

Java Database Connectivity, an interface that allows Java applications to access the data in a database.

JSP

Java Server Page, a kind of servlet stored in a web page. See serviet.

L

layout view

The Spin view that allows you to create and modify a scene. See scene, view: Compare browser view, outline
view, project view, run view, toybox view:

link

A hypertext pointer from one web page to another.

Glossary-4

Glossary

logic layer

The programming code that manipulates the underlying data in a software program.

M

method

A sequence of Java statements attached to a component that execute when invoked, usually by sending
the name of the method as a command to an actor. See actor, component.

Multipurpose Internet Mail Extension, a way of identifying the kind of content sent over a network,
used by web servers to identify what is being sent to the web browser. See HTML, web server.

\ g\

nonvisual actor
P

An actor with no visible representatioggon the ter display. See actor.

o
ODBC

Open DataBase Connectivity, an interface that allows Java applications to access the data in a database.

outline view

The Spin view of the capsule hierarchy. See capsule, view. Compare browser view, layout view, project view, run
view.

P

parent

A Spin entity that is directly above another in the capsule hierarchy. Also, a Spin alias referring to the
first entity above this behavior or actor in the Spin capsule hierarchy. See alias, capsule.

project view

The Spin view that lets you group all the capsules related to your current application. See capsule, viem:
Compare browser view, layout view, outline view, run view, toybox view:

Glossary-5

Spin User’s Guide

R

response

The method that executes, or the property modification, or the event that is generated, when the
stimulus of a behavior is received. See bebavior, event. Compare stimulus.

run view

The Spin view that allows you to see your application exactly as a user will see it. See view: Compare
browser view, layout view, outline view, project view, toybox view.

S

scene

A visible component that is a kind of container, such as a waffdgw. See component.

script

An arbitrary sequence of Java statements. P?
script behavior E

A Spin behavior that allo ecution of any arbitrary chunk of Java code in response to an event.
See bebhavior. Compare action Behavior, action group bebavior, conditional behavior, counter bebavior, timeline
behavior, user behavior.

serialize

To turn an executable entity such as a component into data that can be sent across a network or stored.
See component.

server

A computer or program satisfying the requests of a client; for example, a web server offering resources
over the World Wide Web. See web server. Compare client.

servlet

An application that runs on a web server and constructs appropriate responses to requests as they
stream in from web browsers. See web server. Compare client, distributed application.

session

A means by which a web server can identify multiple requests as coming from the same web browser.
See dlient, server, web server.

Glossary-6

Glossary

stimulus

The event that triggers a behavior, causing its response to execute. See bebavior, event. Compare response.

T

timeline behavior

A Spin behavior that modifies the properties of one or more actors over time. See bebavior. Compare
action bebavior, action group bebavior, conditional bebavior, connter bebavior, script behavior, user behavior.

toybox view

The Spin view that lets you see your application run as you create and modify it. See vien: Compare
browser view, layout view, outline view, project view, run view.

’ ¢\

A Uniform Resource Locator is used gg speci ces on the World Wide Web, such as web pages
and servlets. See HTTP, web server.

user behavior

A named, saved, reusable havior. See bebavior. Compare action bebavior, action group bebavior,
conditional bebavior, counter behdvior, script bebavior, timeline bebavior.

user interface

Means by which users make their will known to an application—commonly, with windows, buttons,
and menus.

Vv
view

A view allows you to see, and often to edit, a specific object. For example, Spin allows you to view and
edit a capsule in several ways. See capsule. Compare browser view, layout view, outline view, project view, run view,
toybox view.

visual actor

An actor with a visible representation on the computer display. See actor.

Glossary-7

Spin User’s Guide

W

watch variable
A variable whose value is visible in the debugger, so that you can watch it change.
web page

A file whose contents are encoded with HTML, thus permitting access from a web browser such as
Netscape Navigator or Internet Explorer.

web server

A computer more or less permanently connected to the Internet that offers to web users a set of
resources—text, images, music, or other downloadable files. See Infernet.

World Wide Web

An application that runs on the Internet: it consists of geffetworl of computers that function as web
servers. See web server.

Glossary-8

	Basic Ideas
	Introduction to Web Applications
	Building Web Applications with Spin
	Components
	JavaBeans
	Properties
	Events
	Methods

	Enterprise JavaBeans

	Actors
	Behaviors
	Activating Behaviors
	Kinds of Behaviors
	Action Behaviors
	Action Group Behaviors
	Conditional Behaviors
	Script Behaviors
	Timeline Behaviors
	Counter Behaviors
	User Behaviors

	Data
	Java Expressions
	Capsules
	Kinds of Capsules
	Capsule Hierarchy
	Figure 1-1: Capsule outline view

	Aliases
	Figure 1-2: Capsule outline view for button with children behaviors

	Editors and Views
	Kinds of Editors and Views
	Figure 1-3: Project editor
	Figure 1-4: Capsule outline editor
	Figure 1-5: Toybox editor
	Figure 1-6: Run view
	Figure 1-7: Layout editor

	Edit as You Run

	Debugging

	Building a Web Application
	What Web Applications Do
	URLs
	Requests
	Sessions
	Responses

	Building a Simple Servlet
	Table 2-1: Spin HTML Components
	Set Up for Testing
	Figure 2-2: Spin’s Built-in Web Server

	Producing a Web Page
	Adding Dynamic Content
	Adding a Simple Form
	Using a Template

	Accessing a Database
	Accessing the Built-in Database
	Browsing Connections

	Building SQL Statements
	Table 3-1: Spin Database Components
	Checking Options
	Checking Syntax
	Building Simple Statements
	Specify a Connection
	Specify a Table
	Specify Columns
	Specify Conditions
	Table 3-2: SqlInsert, SqlDelete, and SqlUpdate Options

	SqlSelect
	Choose Tables
	Specify Joins
	Specify Sorting
	Format Columns
	Table 3-3: SqlSelect Options

	SqlRawStatement and SqlProcedureCall
	Table 3-4: SqlRawStatement Options
	Table 3-5: SqlProcedureCall Options

	Building SQL Statements - Additional Tools

	Executing SQL Statements
	Causing Execution
	Retrieving Results
	Passing Parameters

	Connecting to a Database
	Defining Connection Pools
	spinsql.properties

	Using Connection Pools
	Using a Dedicated Connection

	For More Information

	Using the Spin JSP Tag Library
	JSP Control Tags
	Table 4-1: JSP control flow tags implemented in Spin
	call tag
	Table 4-2: call tag attributes

	conditional tag
	Table 4-3: conditional tag attributes

	repeat tag
	Table 4-4: repeat tag attributes

	JSP User Interface Tags
	Table 4-5: JSP user interface tags implemented in Spin
	Attributes for Individual User Interface Tags
	Table 4-6: cancel tag attributes
	Table 4-7: checkbox tag attributes
	Table 4-8: file tag attributes
	Table 4-9: form tag attributes
	Table 4-10: hidden tag attributes
	Table 4-11: option tag attributes
	Table 4-12: password tag attributes
	Table 4-13: radio tag attributes
	Table 4-14: reset tag attributes
	Table 4-15: select tag attributes
	Table 4-16: submit tag attributes
	Table 4-17: text tag attributes
	Table 4-18: textarea tag attributes

	Creating a JSP with Embedded Spin Capsule

	Working with EJBs in Spin
	Configuring Your Environment
	Conventions
	Configuring the Server
	Copy the EJBs to the jBoss\deploy folder
	Copy other files
	Edit the jBoss.properties file
	Add Database Drivers
	Edit the jBoss.conf file

	Configuring Spin
	Process EJBs for Spin
	Enable the Web Server in Spin
	Enable jBoss in Spin
	Enable Pointbase in Spin
	Restart Spin

	Running the BankTransactions Example
	Learning from the Bank Transactions Example

	Events
	Events Generated by Behaviors
	IfTest
	ActionGroup
	Timeline and Counter

	Events Generated by Capsules
	Applet Capsules
	Application Capsules
	Nonvisual Actor Capsules
	Visual Actor Capsules
	Servlet Capsules
	Java Server Page Bean Capsules

	Events Generated by Other Built-in Components

	User Interface Reference
	Viewing JavaDocs
	Project Editor
	File Menu
	Edit Menu
	General
	Display
	ScriptOptions
	EnterpriseJavaBeans
	DebugServer

	Project Menu
	View Menu

	Capsule Outline Editor
	Drag and Drop in the Outline
	Using the Toolbar
	Figure B-1: Capsule Outline editor toolbar

	File Menu
	Edit Menu
	Insert Menu
	View Menu
	Outline Menu
	Capsule, Behavior, or Actor Menu
	Capsule Menu
	Behavior Menu
	Actor Menu

	Toybox Editor
	Editing Handles
	Drag and Drop or Copy Objects in the Toybox
	Toybox Editor Menus
	Running versus Editing

	Debugging Using an Error Window
	Debugging Using the Console Window

	Glossary

